Tom 4, Nr 2-3 (2023)
Wytyczne / stanowisko ekspertów
Wysłany: 2023-07-27
Zaakceptowany: 2023-08-29
Opublikowany online: 2023-09-28
Pobierz cytowanie

Standardy techniczne dla oscylometrii

Gregory G. King1, Jason Bates2, Kenneth I. Berger3, Peter Calverley4, Pedro L. de Melo5, Raffaele L. Dellacà6, Ramon Farré7, Graham L. Hall8, Iulia Ioan9, Charles G. Irvin2, David W. Kaczka10, David A. Kaminsky2, Hajime Kurosawa11, Enrico Lombardi12, Geoffrey N. Maksym13, François Marchal9, Beno W. Oppenheimer3, Shannon J. Simpson8, Cindy Thamrin1, Maarten van den Berge14, Ellie Oostveen15, Tłumaczenie: dr hab. n. med. Irena Wojsyk, dr hab. n. med. Eliza Wasilewska
Pneum Pol 2023;4(2-3):47-69.
Afiliacje
  1. The Department of Respiratory Medicine and Airway Physiology and Imaging Group, Royal North Shore Hospital and The Woolcock Institute of Medical Research, The University of Sydney NSW 2006, Australia
  2. Department of Medicine, Pulmonary/Critical Care Division, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
  3. Division of Pulmonary, Critical Care, and Sleep Medicine, NYU School of Medicine and André Cournand Pulmonary Physiology Laboratory, Belleuve Hospital, New York, USA
  4. Institute of Ageing and Chronic Disease,University of Liverpool, Liverpool, UK
  5. Institute of Biology and Faculty of Engineering, Department of Physiology, Biomedical Instrumentation Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
  6. Dipartimento di Elettronica, Informazione e Bioingegneria – DEIB, Politecnico di Milano University, Milano, Italy
  7. Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain and CIBER de Enfermedades Respiratorias, Madrid, Spain
  8. Children’s Lung Health, Telethon Kids Institute; School of Physiotherapy and Exercise Science, Curtin University, Perth WA, Australia
  9. Department of Pediatric Lung Function Testing, Children’s Hospital, Vandoeuvre-lès-Nancy, France; EA 3450 DevAH — Laboratory of Physiology, Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France
  10. Departments of Anesthesia, Biomedical Engineering and Radiology, University of Iowa, Iowa City, Iowa, USA
  11. Department of Occupational Health, Tohoku University School of Medicine, Sendai, Japan
  12. Pediatric Pulmonary Unit, Meyer Pediatric University Hospital, Florence, Italy
  13. School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
  14. University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
  15. Department of Respiratory Medicine, Antwerp University Hospital and University of Antwerp, Belgium

dostęp płatny

Tom 4, Nr 2-3 (2023)
WYTYCZNE I REKOMENDACJE
Wysłany: 2023-07-27
Zaakceptowany: 2023-08-29
Opublikowany online: 2023-09-28

Streszczenie

Oscylometria, zwana także metodą oscylacji wymuszonych (FOT, forced oscillatory technique) mierzy własności mechaniczne układu oddechowego (górnych i dolnych dróg oddechowych, miąższu płuc czy ściany klatki piersiowej). Pomiary dokonywane są podczas spokojnego oddychania, w trakcie dostarczania sygnału ciśnienia oscylacyjnego (nazywanego sygnałem wejścia lub wymuszającym), do układu oddechowego, najczęściej przez usta. Wobec coraz powszechniejszego zastosowania oscylometrii zarówno w praktyce klinicznej, jak i w badaniach naukowych, niezwykle istotne jest, aby wszystkie dane techniczne dotyczące urządzeń, przetwarzania i analizy sygnału oraz protokołów badań były transparentne i jasno opisane, co umożliwia standaryzację, porównanie i powtórzenie badań klinicznych i naukowych. Z tego powodu grupa robocza międzynarodowych ekspertów Europejskiego Towarzystwa Chorób Płuc (ERS, European Respiratory Society), aktywnie uczestniczących w badaniach z zastosowaniem oscylometrii opracowała aktualizację Standardów Technicznych Oscylometrii opublikowanych w 2003 roku. Celem grupy roboczej było dostarczenie technicznych zaleceń dotyczących urządzeń, oprogramowania, protokołów badania oraz kontroli jakości pomiarów oscylometrycznych.

Główne zmiany wprowadzone w tym dokumencie w porównaniu z oryginałem z 2003 roku obejmują: 1) nowe procedury kontroli jakości wynikające z analizy poszczególnych oddechów oraz postępowania z artefaktami; 2) zalecenie transparentnego przedstawienia sposobu przetwarzania sygnału, kontroli jakości, postępowania z artefaktami oraz protokołów badania (np. ilość i czas trwania poszczególnych pomiarów podczas badania) w raportach badań zamieszczanych w dokumentacji medycznej i publikacjach, co pozwoli na porównanie i powtarzanie badań wykonanych z zastosowaniem różnych urządzeń i w różnych pracowniach; 3) przegląd podsumowujący nowe dane uzasadniające przyjęte punkty odcięcia dla prób rozkurczowych oraz prowokacyjnych oskrzeli; 4) zaktualizowaną listę należnych wartości impedancji u dorosłych i dzieci.

Streszczenie

Oscylometria, zwana także metodą oscylacji wymuszonych (FOT, forced oscillatory technique) mierzy własności mechaniczne układu oddechowego (górnych i dolnych dróg oddechowych, miąższu płuc czy ściany klatki piersiowej). Pomiary dokonywane są podczas spokojnego oddychania, w trakcie dostarczania sygnału ciśnienia oscylacyjnego (nazywanego sygnałem wejścia lub wymuszającym), do układu oddechowego, najczęściej przez usta. Wobec coraz powszechniejszego zastosowania oscylometrii zarówno w praktyce klinicznej, jak i w badaniach naukowych, niezwykle istotne jest, aby wszystkie dane techniczne dotyczące urządzeń, przetwarzania i analizy sygnału oraz protokołów badań były transparentne i jasno opisane, co umożliwia standaryzację, porównanie i powtórzenie badań klinicznych i naukowych. Z tego powodu grupa robocza międzynarodowych ekspertów Europejskiego Towarzystwa Chorób Płuc (ERS, European Respiratory Society), aktywnie uczestniczących w badaniach z zastosowaniem oscylometrii opracowała aktualizację Standardów Technicznych Oscylometrii opublikowanych w 2003 roku. Celem grupy roboczej było dostarczenie technicznych zaleceń dotyczących urządzeń, oprogramowania, protokołów badania oraz kontroli jakości pomiarów oscylometrycznych.

Główne zmiany wprowadzone w tym dokumencie w porównaniu z oryginałem z 2003 roku obejmują: 1) nowe procedury kontroli jakości wynikające z analizy poszczególnych oddechów oraz postępowania z artefaktami; 2) zalecenie transparentnego przedstawienia sposobu przetwarzania sygnału, kontroli jakości, postępowania z artefaktami oraz protokołów badania (np. ilość i czas trwania poszczególnych pomiarów podczas badania) w raportach badań zamieszczanych w dokumentacji medycznej i publikacjach, co pozwoli na porównanie i powtarzanie badań wykonanych z zastosowaniem różnych urządzeń i w różnych pracowniach; 3) przegląd podsumowujący nowe dane uzasadniające przyjęte punkty odcięcia dla prób rozkurczowych oraz prowokacyjnych oskrzeli; 4) zaktualizowaną listę należnych wartości impedancji u dorosłych i dzieci.

Pobierz cytowanie

Słowa kluczowe

technika oscylacji wymuszonych, oscylometria impulsowa, badania czynnościowe płuc

Informacje o artykule
Tytuł

Standardy techniczne dla oscylometrii

Czasopismo

Pneumonologia Polska

Numer

Tom 4, Nr 2-3 (2023)

Typ artykułu

Wytyczne / stanowisko ekspertów

Strony

47-69

Opublikowany online

2023-09-28

Wyświetlenia strony

182

Wyświetlenia/pobrania artykułu

14

Rekord bibliograficzny

Pneum Pol 2023;4(2-3):47-69.

Słowa kluczowe

technika oscylacji wymuszonych
oscylometria impulsowa
badania czynnościowe płuc

Autorzy

Gregory G. King
Jason Bates
Kenneth I. Berger
Peter Calverley
Pedro L. de Melo
Raffaele L. Dellacà
Ramon Farré
Graham L. Hall
Iulia Ioan
Charles G. Irvin
David W. Kaczka
David A. Kaminsky
Hajime Kurosawa
Enrico Lombardi
Geoffrey N. Maksym
François Marchal
Beno W. Oppenheimer
Shannon J. Simpson
Cindy Thamrin
Maarten van den Berge
Ellie Oostveen
Tłumaczenie: dr hab. n. med. Irena Wojsyk, dr hab. n. med. Eliza Wasilewska

Referencje (146)
  1. Oostveen E, MacLeod D, Lorino H, et al. ERS Task Force on Respiratory Impedance Measurements. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J. 2003; 22(6): 1026–1041.
  2. DUBOIS AB, BRODY AW, LEWIS DH, et al. Oscillation mechanics of lungs and chest in man. J Appl Physiol. 1956; 8(6): 587–594.
  3. Kaczka DW, Ingenito EP, Suki B, et al. Partitioning airway and lung tissue resistances in humans: effects of bronchoconstriction. J Appl Physiol (1985). 1997; 82(5): 1531–1541.
  4. Kaczka DW, Lutchen KR. Servo-controlled pneumatic pressure oscillator for respiratory impedance measurements and high-frequency ventilation. Ann Biomed Eng. 2004; 32(4): 596–608.
  5. Hantos Z, Daróczy B, Suki B, et al. Forced oscillatory impedance of the respiratory system at low frequencies. J Appl Physiol (1985). 1986; 60(1): 123–132.
  6. Frey U, Suki B, Kraemer R, et al. Human respiratory input impedance between 32 and 800 Hz, measured by interrupter technique and forced oscillations. J Appl Physiol (1985). 1997; 82(3): 1018–1023.
  7. OTIS AB, MCKERROW CB, BARTLETT RA, et al. Mechanical factors in distribution of pulmonary ventilation. J Appl Physiol. 1956; 8(4): 427–443.
  8. Bhansali PV, Irvin CG, Dempsey JA, et al. Human pulmonary resistance: effect of frequency and gas physical properties. J Appl Physiol Respir Environ Exerc Physiol. 1979; 47(1): 161–168.
  9. Wesseling GJ, Vanderhoven-Augustin IM, Wouters EF. Forced oscillation technique and spirometry in cold air provocation tests. Thorax. 1993; 48(3): 254–259.
  10. Oostveen E, Boda K, van der Grinten CPM, et al. Respiratory impedance in healthy subjects: baseline values and bronchodilator response. Eur Respir J. 2013; 42(6): 1513–1523.
  11. Hayden MJ, Petak F, Hantos Z, et al. Measurement of low-frequency respiratory impedance in infants. Am J Respir Crit Care Med. 1996; 154(1): 161–166.
  12. Hall GL, Hantos Z, Peták F, et al. Airway and respiratory tissue mechanics in normal infants. Am J Respir Crit Care Med. 2000; 162(4 Pt 1): 1397–1402.
  13. Hall GL, Hantos Z, Wildhaber JH, et al. Contribution of nasal pathways to low frequency respiratory impedance in infants. Thorax. 2002; 57(5): 396–399.
  14. Frey U, Makkonen K, Wellman T, et al. Alterations in airway wall properties in infants with a history of wheezing disorders. Am J Respir Crit Care Med. 2000; 161(6): 1825–1829.
  15. Frey U, Silverman M, Kraemer R, et al. High-frequency respiratory input impedance measurements in infants assessed by the high speed interrupter technique. Eur Respir J. 1998; 12(1): 148–158.
  16. Kjeldgaard JM, Hyde RW, Speers DM, et al. Frequency dependence of total respiratory resistance in early airway disease. Am Rev Respir Dis. 1976; 114(3): 501–508.
  17. Downie SR, Salome CM, Verbanck S, et al. Predictors of airway hyperresponsiveness differ between old and young patients with asthma. Chest. 2011; 139(6): 1395–1401.
  18. Lutchen KR, Hantos Z, Peták F, et al. Airway inhomogeneities contribute to apparent lung tissue mechanics during constriction. J Appl Physiol (1985). 1996; 80(5): 1841–1849.
  19. Bhatawadekar SA, Leary D, Maksym GN. Modelling resistance and reactance with heterogeneous airway narrowing in mild to severe asthma. Can J Physiol Pharmacol. 2015; 93(3): 207–214.
  20. Thorpe CW, Salome CM, Berend N, et al. Modeling airway resistance dynamics after tidal and deep inspirations. J Appl Physiol (1985). 2004; 97(5): 1643–1653.
  21. Kaczka DW, Ingenito EP, Israel E, et al. Airway and lung tissue mechanics in asthma. Effects of albuterol. Am J Respir Crit Care Med. 1999; 159(1): 169–178.
  22. Bates JHT. The Role of Airway Shunt Elastance on the Compartmentalization of Respiratory System Impedance. J Eng Sci Med Diagn Ther. 2019; 2(1): 0110011–110018.
  23. Maes H, Zivanovic M, Schoukens J, et al. Estimating Respiratory Impedance at Breathing Frequencies Using Regularized Least Squares on Forced Oscillation Technique Measurements. IEEE Transactions on Instrumentation and Measurement. 2017; 66(3): 479–491.
  24. Hantos Z, Czövek D, Gyurkovits Z, et al. Assessment of respiratory mechanics with forced oscillations in healthy newborns. Pediatr Pulmonol. 2015; 50(4): 344–352.
  25. Gray D, Czövek D, Smith E, et al. Respiratory impedance in healthy unsedated South African infants: effects of maternal smoking. Respirology. 2015; 20(3): 467–473.
  26. Gray D, Willemse L, Visagie A, et al. Determinants of early-life lung function in African infants. Thorax. 2017; 72(5): 445–450.
  27. Bohadana AB, Peslin R, Megherbi SE, et al. Dose-response slope of forced oscillation and forced expiratory parameters in bronchial challenge testing. Eur Respir J. 1999; 13(2): 295–300.
  28. Broeders ME, Molema J, Hop WCJ, et al. Bronchial challenge, assessed with forced expiratory manoeuvres and airway impedance. Respir Med. 2005; 99(8): 1046–1052.
  29. Imahashi Y, Kanazawa H, Ijiri N, et al. Analysis of the contributing factors to airway hyperresponsiveness by a forced oscillation technique in patients with asthma. Osaka City Med J. 2014; 60(2): 53–62.
  30. McClean MA, Htun C, King GG, et al. Cut-points for response to mannitol challenges using the forced oscillation technique. Respir Med. 2011; 105(4): 533–540.
  31. Naji N, Keung E, Kane J, et al. Comparison of changes in lung function measured by plethymography and IOS after bronchoprovocation. Respir Med. 2013; 107(4): 503–510.
  32. Rozen D, Bracamonte M, Sergysels R. Comparison between plethysmographic and forced oscillation techniques in the assessment of airflow obstruction. Respiration. 1983; 44(3): 197–203.
  33. Schmekel B, Smith HJ. The diagnostic capacity of forced oscillation and forced expiration techniques in identifying asthma by isocapnic hyperpnoea of cold air. Eur Respir J. 1997; 10(10): 2243–2249.
  34. Suzuki S, Chonan T, Sasaki H, et al. Time-course of response in exercise-induced bronchoconstriction. Ann Allergy. 1984; 53(4): 341–346.
  35. van Noord JA, Clement J, van de Woestijne KP, et al. Total respiratory resistance and reactance as a measurement of response to bronchial challenge with histamine. Am Rev Respir Dis. 1989; 139(4): 921–926.
  36. Wouters EF, Polko AH, Schouten HJ, et al. Contribution of impedance measurement of the respiratory system to bronchial challenge tests. J Asthma. 1988; 25(5): 259–267.
  37. Mansur AH, Manney S, Ayres JG. Methacholine-induced asthma symptoms correlate with impulse oscillometry but not spirometry. Respir Med. 2008; 102(1): 42–49.
  38. Tsurikisawa N, Oshikata C, Tsuburai T, et al. [PHYSIOLOGIC AIRWAY RESPONSES TO INHALED HISTAMINE AND ACETYLCHOLINE IN PATIENTS WITH MILD ASTHMA AS ANALYZED BY FORCED OSCILLATION]. Arerugi. 2015; 64(7): 952–970.
  39. Alblooshi AS, Simpson SJ, Stick SM, et al. The safety and feasibility of the inhaled mannitol challenge test in young children. Eur Respir J. 2013; 42(5): 1420–1423.
  40. Bisgaard H, Klug B. Lung function measurement in awake young children. Eur Respir J. 1995; 8(12): 2067–2075.
  41. Hall GL, Gangell C, Fukushima T, et al. Application of a shortened inhaled adenosine-5'-monophosphate challenge in young children using the forced oscillation technique. Chest. 2009; 136(1): 184–189.
  42. Kalliola S, Malmberg LP, Kajosaari M, et al. Assessing direct and indirect airway hyperresponsiveness in children using impulse oscillometry. Ann Allergy Asthma Immunol. 2014; 113(2): 166–172.
  43. Malmberg LP, Mäkelä MJ, Mattila PS, et al. Exercise-induced changes in respiratory impedance in young wheezy children and nonatopic controls. Pediatr Pulmonol. 2008; 43(6): 538–544.
  44. Nielsen KG, Bisgaard H. The effect of inhaled budesonide on symptoms, lung function, and cold air and methacholine responsiveness in 2- to 5-year-old asthmatic children. Am J Respir Crit Care Med. 2000; 162(4 Pt 1): 1500–1506.
  45. Schulze J, Smith HJ, Fuchs J, et al. Methacholine challenge in young children as evaluated by spirometry and impulse oscillometry. Respir Med. 2012; 106(5): 627–634.
  46. Marchal F, Mazurek H, Habib M, et al. Input respiratory impedance to estimate airway hyperreactivity in children: standard method versus head generator. Eur Respir J. 1994; 7(3): 601–607.
  47. Simpson SJ, Straszek SP, Sly PD, et al. Clinical investigation of respiratory system admittance in preschool children. Pediatr Pulmonol. 2012; 47(1): 53–58.
  48. Boeyen J, Callan AC, Blake D, et al. Investigating the relationship between environmental factors and respiratory health outcomes in school children using the forced oscillation technique. Int J Hyg Environ Health. 2017; 220(2 Pt B): 494–502.
  49. Pasker HG, Peeters M, Genet P, et al. Short-term ventilatory effects in workers exposed to fumes containing zinc oxide: comparison of forced oscillation technique with spirometry. Eur Respir J. 1997; 10(7): 1523–1529.
  50. Pham QT, Bourgkard E, Chau N, et al. Forced oscillation technique (FOT): a new tool for epidemiology of occupational lung diseases? Eur Respir J. 1995; 8(8): 1307–1313.
  51. Skloot G, Goldman M, Fischler D, et al. Respiratory symptoms and physiologic assessment of ironworkers at the World Trade Center disaster site. Chest. 2004; 125(4): 1248–1255.
  52. Oppenheimer BW, Goldring RM, Herberg ME, et al. Distal airway function in symptomatic subjects with normal spirometry following World Trade Center dust exposure. Chest. 2007; 132(4): 1275–1282.
  53. Friedman SM, Maslow CB, Reibman J, et al. Case-control study of lung function in World Trade Center Health Registry area residents and workers. Am J Respir Crit Care Med. 2011; 184(5): 582–589.
  54. Berger KI, Turetz M, Liu M, et al. Oscillometry complements spirometry in evaluation of subjects following toxic inhalation. ERJ Open Res. 2015; 1(2).
  55. Jordan HT, Friedman SM, Reibman J, et al. Risk factors for persistence of lower respiratory symptoms among community members exposed to the 2001 World Trade Center terrorist attacks. Occup Environ Med. 2017; 74(6): 449–455.
  56. Dellacà RL, Gobbi A, Pastena M, et al. Home monitoring of within-breath respiratory mechanics by a simple and automatic forced oscillation technique device. Physiol Meas. 2010; 31(4): N11–N24.
  57. Rigau J, Farré R, Roca J, et al. A portable forced oscillation device for respiratory home monitoring. Eur Respir J. 2002; 19(1): 146–150.
  58. Timmins SC, Diba C, Thamrin C, et al. The feasibility of home monitoring of impedance with the forced oscillation technique in chronic obstructive pulmonary disease subjects. Physiol Meas. 2013; 34(1): 67–81.
  59. Gobbi A, Dellacá RL, King G, et al. Toward Predicting Individual Risk in Asthma Using Daily Home Monitoring of Resistance. Am J Respir Crit Care Med. 2017; 195(2): 265–267.
  60. Walker PP, Pompilio PP, Zanaboni P, et al. Telemonitoring in Chronic Obstructive Pulmonary Disease (CHROMED). A Randomized Clinical Trial. Am J Respir Crit Care Med. 2018; 198(5): 620–628.
  61. Kaczka DW, Ingenito EP, Body SC, et al. Inspiratory lung impedance in COPD: effects of PEEP and immediate impact of lung volume reduction surgery. J Appl Physiol (1985). 2001; 90(5): 1833–1841.
  62. Navajas D, Farré R, Canet J, et al. Respiratory input impedance in anesthetized paralyzed patients. J Appl Physiol (1985). 1990; 69(4): 1372–1379.
  63. Lorx A, Suki B, Hercsuth M, et al. Airway and tissue mechanics in ventilated patients with pneumonia. Respir Physiol Neurobiol. 2010; 171(2): 101–109.
  64. Kaczka DW, Ingenito EP, Lutchen KR. Technique to determine inspiratory impedance during mechanical ventilation: implications for flow limited patients. Ann Biomed Eng. 1999; 27(3): 340–355.
  65. Lutchen KR, Yang K, Kaczka DW, et al. Optimal ventilation waveforms for estimating low-frequency respiratory impedance. J Appl Physiol (1985). 1993; 75(1): 478–488.
  66. Lutchen KR. Optimal selection of frequencies for estimating parameters from respiratory impedance data. IEEE Trans Biomed Eng. 1988; 35(8): 607–617.
  67. Suki B, Lutchen KR. Pseudorandom signals to estimate apparent transfer and coherence functions of nonlinear systems: applications to respiratory mechanics. IEEE Trans Biomed Eng. 1992; 39(11): 1142–1151.
  68. Zannin E, Chakrabarti B, Govoni L, et al. Detection of Expiratory Flow Limitation by Forced Oscillations during Noninvasive Ventilation. Am J Respir Crit Care Med. 2019; 200(8): 1063–1065.
  69. Bates JHT, Irvin CG, Farré R, et al. Oscillation mechanics of the respiratory system. Compr Physiol. 2011; 1(3): 1233–1272.
  70. Kaczka DW, Dellacá RL. Oscillation mechanics of the respiratory system: applications to lung disease. Crit Rev Biomed Eng. 2011; 39(4): 337–359.
  71. Horowitz JG, Siegel SD, Primiano FP, et al. Computation of respiratory impedance from forced sinusoidal oscillations during breathing. Comput Biomed Res. 1983; 16(6): 499–521.
  72. Oppenheimer BW, Goldring RM, Berger KI. Distal airway function assessed by oscillometry at varying respiratory rate: comparison with dynamic compliance. COPD. 2009; 6(3): 162–170.
  73. Michaelson ED, Grassman ED, Peters WR. Pulmonary mechanics by spectral analysis of forced random noise. J Clin Invest. 1975; 56(5): 1210–1230.
  74. Daróczy B, Hantos Z. Generation of optimum pseudorandom signals for respiratory impedance measurements. Int J Biomed Comput. 1990; 25(1): 21–31.
  75. Daróczy B, Fabula A, Hantos Z. Use of noninteger-multiple pseudorandom excitation to minimize nonlinear effects on impedance estimation. Eur Respir Rev. 1991; 1: 183–187.
  76. Suki B, Hantos Z, Daróczy B, et al. Nonlinearity and harmonic distortion of dog lungs measured by low-frequency forced oscillations. J Appl Physiol (1985). 1991; 71(1): 69–75.
  77. Gomes RF, Shen X, Ramchandani R, et al. Comparative respiratory system mechanics in rodents. J Appl Physiol (1985). 2000; 89(3): 908–916.
  78. Zhang Q, Suki B, Lutchen KR. Harmonic distortion from nonlinear systems with broadband inputs: applications to lung mechanics. Ann Biomed Eng. 1995; 23(5): 672–681.
  79. Hellinckx J, Cauberghs M, De Boeck K, et al. Evaluation of impulse oscillation system: comparison with forced oscillation technique and body plethysmography. Eur Respir J. 2001; 18(3): 564–570.
  80. Delavault E, Saumon G, Georges R. Identification of transducer defect in respiratory impedance measurements by forced random noise. Correction of experimental data. Respir Physiol. 1980; 40(1): 107–117.
  81. Navajas D, Duvivier C, Farré R, et al. A simplified method for monitoring respiratory impedance during continuous positive airway pressure. Eur Respir J. 2000; 15(1): 185–191.
  82. Peslin R, Jardin P, Duvivier C, et al. In-phase rejection requirements for measuring respiratory input impedance. J Appl Physiol Respir Environ Exerc Physiol. 1984; 56(3): 804–809.
  83. Farré R, Navajas D, Peslin R, et al. A correction procedure for the asymmetry of differential pressure transducers in respiratory impedance measurements. IEEE Trans Biomed Eng. 1989; 36(11): 1137–1140.
  84. Farré R, Peslin R, Navajas D, et al. Analysis of the dynamic characteristics of pressure transducers for studying respiratory mechanics at high frequencies. Med Biol Eng Comput. 1989; 27(5): 531–537.
  85. Sly PD, Shackleton C, Czovek D, et al. Systematic Error in Respiratory Impedance Using Commercial Equipment Calibrated according to the Manufacturer's Instructions. Am J Respir Crit Care Med. 2018; 197(4): 532–534.
  86. Calverley PMA, Farre R. Putting noninvasive lung mechanics into context. Eur Respir J. 2013; 42(6): 1435–1437.
  87. Miller MR, Hankinson J, Brusasco V, et al. ATS/ERS Task Force. Standardisation of spirometry. Eur Respir J. 2005; 26(2): 319–338.
  88. Isetta V, Montserrat JM, Santano R, et al. Novel Approach to Simulate Sleep Apnea Patients for Evaluating Positive Pressure Therapy Devices. PLoS One. 2016; 11(3): e0151530.
  89. Farré R, Navajas D, Montserrat JM. Technology for noninvasive mechanical ventilation: looking into the black box. ERJ Open Res. 2016; 2(1).
  90. Wanger J, Clausen JL, Coates A, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005; 26(3): 511–522.
  91. Dionísio GH, Dos Santos DO, Perossi L, et al. The Influence of Different Mouthpieces on Impulse Oscillometry Results. Respir Care. 2018; 63(5): 565–572.
  92. Thamrin C, Frey U. Effect of bacterial filter on measurement of interrupter resistance in preschool and school-aged children. Pediatr Pulmonol. 2008; 43(8): 781–787.
  93. Beydon N, Davis SD, Lombardi E, et al. American Thoracic Society/European Respiratory Society Working Group on Infant and Young Children Pulmonary Function Testing. An official American Thoracic Society/European Respiratory Society statement: pulmonary function testing in preschool children. Am J Respir Crit Care Med. 2007; 175(12): 1304–1345.
  94. Brown NJ, Salome CM, Berend N, et al. A comparison of two methods for measuring airway distensibility: nitrogen washout and the forced oscillation technique. Physiol Meas. 2004; 25(4): 1067–1075.
  95. Kelly VJ, Brown NJ, Sands SA, et al. Effect of airway smooth muscle tone on airway distensibility measured by the forced oscillation technique in adults with asthma. J Appl Physiol (1985). 2012; 112(9): 1494–1503.
  96. Mailhot-Larouche S, Lachance M, Bullone M, et al. Assessment of Airway Distensibility by the Forced Oscillation Technique: Reproducible and Potentially Simplifiable. Front Physiol. 2017; 8: 223.
  97. Watts JC, Farah CS, Seccombe LM, et al. Measurement duration impacts variability but not impedance measured by the forced oscillation technique in healthy, asthma and COPD subjects. ERJ Open Res. 2016; 2(2).
  98. Robinson PD, Turner M, Brown NJ, et al. Procedures to improve the repeatability of forced oscillation measurements in school-aged children. Respir Physiol Neurobiol. 2011; 177(2): 199–206.
  99. Jensen A, Atileh H, Suki B, et al. Selected contribution: airway caliber in healthy and asthmatic subjects: effects of bronchial challenge and deep inspirations. J Appl Physiol (1985). 2001; 91(1): 506–15; discussion 504.
  100. Salome CM, Thorpe CW, Diba C, et al. Airway re-narrowing following deep inspiration in asthmatic and nonasthmatic subjects. Eur Respir J. 2003; 22(1): 62–68.
  101. Slats AM, Janssen K, van Schadewijk A, et al. Bronchial inflammation and airway responses to deep inspiration in asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007; 176(2): 121–128.
  102. Oostveen E, Peslin R, Gallina C, et al. Flow and volume dependence of respiratory mechanical properties studied by forced oscillation. J Appl Physiol (1985). 1989; 67(6): 2212–2218.
  103. Chapman DG, Berend N, King GG, et al. Deep inspirations protect against airway closure in nonasthmatic subjects. J Appl Physiol (1985). 2009; 107(2): 564–569.
  104. Orehek J, Nicoli MM, Delpierre S, et al. Influence of the previous deep inspiration on the spirometri measurement of provoked bronchoconstriction in asthma. Am Rev Respir Dis. 1981; 123: 269–272.
  105. Scichilone N, La Sala A, Bellia M, et al. The airway response to deep inspirations decreases with COPD severity and is associated with airway distensibility assessed by computed tomography. J Appl Physiol (1985). 2008; 105(3): 832–838.
  106. Skloot G, Schechter C, Desai A, et al. Impaired response to deep inspiration in obesity. J Appl Physiol (1985). 2011; 111(3): 726–734.
  107. Pellegrino R, Sterk PJ, Sont JK, et al. Assessing the effect of deep inhalation on airway calibre: a novel approach to lung function in bronchial asthma and COPD. Eur Respir J. 1998; 12(5): 1219–1227.
  108. Skloot G, Togias A. Bronchodilation and bronchoprotection by deep inspiration and their relationship to bronchial hyperresponsiveness. Clin Rev Allergy Immunol. 2003; 24(1): 55–72.
  109. Lutchen KR, Jensen A, Atileh H, et al. Airway constriction pattern is a central component of asthma severity: the role of deep inspirations. Am J Respir Crit Care Med. 2001; 164(2): 207–215.
  110. Lim TK, Ang SM, Rossing TH, et al. The effects of deep inhalation on maximal expiratory flow during intensive treatment of spontaneous asthmatic episodes. Am Rev Respir Dis. 1989; 140(2): 340–343.
  111. How SC, Romer LM, McConnell AK. Acute effects of inspiratory pressure threshold loading upon airway resistance in people with asthma. Respir Physiol Neurobiol. 2009; 166(3): 159–163.
  112. Nakagawa M, Hattori N, Haruta Y, et al. Effect of increasing respiratory rate on airway resistance and reactance in COPD patients. Respirology. 2015; 20(1): 87–94.
  113. Bhatawadekar SA, Leary D, Chen Y, et al. A study of artifacts and their removal during forced oscillation of the respiratory system. Ann Biomed Eng. 2013; 41(5): 990–1002.
  114. Que CL, Kenyon CM, Olivenstein R, et al. Homeokinesis and short-term variability of human airway caliber. J Appl Physiol (1985). 2001; 91(3): 1131–1141.
  115. Schweitzer C, Chone C, Marchal F. Influence of data filtering on reliability of respiratory impedance and derived parameters in children. Pediatr Pulmonol. 2003; 36(6): 502–508.
  116. Dellacà RL, Santus P, Aliverti A, et al. Detection of expiratory flow limitation in COPD using the forced oscillation technique. Eur Respir J. 2004; 23(2): 232–240.
  117. Marchal F, Schweitzer C, Demoulin B, et al. Filtering artefacts in measurements of forced oscillation respiratory impedance in young children. Physiol Meas. 2004; 25(5): 1153–1166.
  118. Pham TT, Thamrin C, Robinson PD, et al. Respiratory Artefact Removal in Forced Oscillation Measurements: A Machine Learning Approach. IEEE Trans Biomed Eng. 2017; 64(8): 1679–1687.
  119. Maki BE, Maki BE. Interpretation of the coherence function when using pseudorandom inputs to identify nonlinear systems. IEEE Trans Biomed Eng. 1986; 33(8): 775–779.
  120. Hantos Z, Daróczy B, Suki B, et al. Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol (1985). 1992; 72(1): 168–178.
  121. Oostveen E, Zwart A. Reliability of the coherence function for rejecting respiratory impedance data. Eur Respir Rev. 1991; 1: 218–221.
  122. Lorino H, Mariette C, Karouia M, et al. Influence of signal processing on estimation of respiratory impedance. J Appl Physiol (1985). 1993; 74(1): 215–223.
  123. Kalchiem-Dekel Or, Hines SE. Forty years of reference values for respiratory system impedance in adults: 1977-2017. Respir Med. 2018; 136: 37–47.
  124. Quanjer PH, Stanojevic S, Cole TJ, et al. ERS Global Lung Function Initiative. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012; 40(6): 1324–1343.
  125. Tanimura K, Hirai T, Sato S, et al. Comparison of two devices for respiratory impedance measurement using a forced oscillation technique: basic study using phantom models. J Physiol Sci. 2014; 64(5): 377–382.
  126. Zimmermann SC, Watts JC, Bertolin A, et al. Discrepancy between in vivo and in vitro comparisons of forced oscillation devices. J Clin Monit Comput. 2018; 32(3): 509–512.
  127. Soares M, Richardson M, Thorpe J, et al. Comparison of Forced and Impulse Oscillometry Measurements: A Clinical Population and Printed Airway Model Study. Sci Rep. 2019; 9(1): 2130.
  128. Hellinckx J, De Boeck K, Bande-Knops J, et al. Bronchodilator response in 3-6.5 years old healthy and stable asthmatic children. Eur Respir J. 1998; 12(2): 438–443.
  129. Calogero C, Simpson SJ, Lombardi E, et al. Respiratory impedance and bronchodilator responsiveness in healthy children aged 2-13 years. Pediatr Pulmonol. 2013; 48(7): 707–715.
  130. Dencker M, Malmberg LP, Valind S, et al. Reference values for respiratory system impedance by using impulse oscillometry in children aged 2-11 years. Clin Physiol Funct Imaging. 2006; 26(4): 247–250.
  131. Frei J, Jutla J, Kramer G, et al. Impulse oscillometry: reference values in children 100 to 150 cm in height and 3 to 10 years of age. Chest. 2005; 128(3): 1266–1273.
  132. Gochicoa-Rangel L, Torre-Bouscoulet L, Martínez-Briseño D, et al. Values of impulse oscillometry in healthy mexican children and adolescents. Respir Care. 2015; 60(1): 119–127.
  133. Nowowiejska B, Tomalak W, Radliński J, et al. Transient reference values for impulse oscillometry for children aged 3-18 years. Pediatr Pulmonol. 2008; 43(12): 1193–1197.
  134. Malmberg LP, Pelkonen A, Poussa T, et al. Determinants of respiratory system input impedance and bronchodilator response in healthy Finnish preschool children. Clin Physiol Funct Imaging. 2002; 22(1): 64–71.
  135. Oostveen E, Dom S, Desager K, et al. Expression of bronchodilator response using forced oscillation technique measurements: absolute versus relative. European Respiratory Journal. 2010; 36(1): 213–213.
  136. Thamrin C, Gangell CL, Kusel MMH, et al. Expression of bronchodilator response using forced oscillation technique measurements: absolute versus relative. Eur Respir J. 2010; 36(1): 212; author reply 213.
  137. Thamrin C, Gangell CL, Udomittipong K, et al. Assessment of bronchodilator responsiveness in preschool children using forced oscillations. Thorax. 2007; 62(9): 814–819.
  138. Oostveen E, Dom S, Desager K, et al. Lung function and bronchodilator response in 4-year-old children with different wheezing phenotypes. Eur Respir J. 2010; 35(4): 865–872.
  139. Calogero C, Parri N, Baccini A, et al. Respiratory impedance and bronchodilator response in healthy Italian preschool children. Pediatr Pulmonol. 2010; 45(11): 1086–1094.
  140. Harrison Jo, Gibson AM, Johnson K, et al. Lung function in preschool children with a history of wheezing measured by forced oscillation and plethysmographic specific airway resistance. Pediatr Pulmonol. 2010; 45(11): 1049–1056.
  141. Barnas GM, Sprung J, Craft TM, et al. Effect of lung volume on lung resistance and elastance in awake subjects measured during sinusoidal forcing. Anesthesiology. 1993; 78(6): 1082–1090.
  142. Nguyen YT, Demoulin B, Schweitzer C, et al. Identification of bronchodilator responsiveness by forced oscillation admittance in children. Pediatr Res. 2007; 62(3): 348–352.
  143. Choi SH, Sheen YHo, Kim MiAe, et al. Clinical Implications of Oscillatory Lung Function during Methacholine Bronchoprovocation Testing of Preschool Children. Biomed Res Int. 2017; 2017: 9460190.
  144. Berger KI, Kalish S, Shao Y, et al. Isolated small airway reactivity during bronchoprovocation as a mechanism for respiratory symptoms in WTC dust-exposed community members. Am J Ind Med. 2016; 59(9): 767–776.
  145. Segal LN, Goldring RM, Oppenheimer BW, et al. Disparity between proximal and distal airway reactivity during methacholine challenge. COPD. 2011; 8(3): 145–152.
  146. Mahadev S, Farah CS, King GG, et al. Obesity, expiratory flow limitation and asthma symptoms. Pulm Pharmacol Ther. 2013; 26(4): 438–443.

Regulamin

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

Wydawcą serwisu jest VM Media Group sp. z o.o, Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl