Tom 4, Nr 1 (2023)
Artykuł przeglądowy
Wysłany: 2022-11-03
Opublikowany online: 2023-07-06
Pobierz cytowanie

Toksyczne uszkodzenie dróg oddechowych

Michał Zieliński1, Jerzy Kozielski2
Pneum Pol 2023;4(1):19-26.
Afiliacje
  1. Katedra i Klinika Chorób Płuc i Gruźłicy, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
  2. Centrum Leczenia Oparzeń im. dra Stanisław Sakiela w Siemianowicach Śląskich

dostęp płatny

Tom 4, Nr 1 (2023)
PRACE POGLĄDOWE
Wysłany: 2022-11-03
Opublikowany online: 2023-07-06

Streszczenie

Toksyczne uszkodzenie dróg oddechowych w wyniku ekspozycji na wziewne toksyny stanowi często występująca formę urazu. Obciąża rokowanie osób z chorobą oparzeniową i jest przyczyną przewlekłych powikłań i objawów ze strony układu oddechowego. Praca omawia budowę i funkcję układu oddechowego mającą związek z rozległością urazu przy narażeniu wziewnym, charakteryzuje wybrane formy zatrucia wziewnego, w tym cechy substancji mające wpływ na wielkość ekspozycji. Ponadto poruszone zostają metody diagnostyki i terapii u osób z toksycznym uszkodzeniem dróg oddechowych.

Streszczenie

Toksyczne uszkodzenie dróg oddechowych w wyniku ekspozycji na wziewne toksyny stanowi często występująca formę urazu. Obciąża rokowanie osób z chorobą oparzeniową i jest przyczyną przewlekłych powikłań i objawów ze strony układu oddechowego. Praca omawia budowę i funkcję układu oddechowego mającą związek z rozległością urazu przy narażeniu wziewnym, charakteryzuje wybrane formy zatrucia wziewnego, w tym cechy substancji mające wpływ na wielkość ekspozycji. Ponadto poruszone zostają metody diagnostyki i terapii u osób z toksycznym uszkodzeniem dróg oddechowych.

Pobierz cytowanie

Słowa kluczowe

oparzenia dróg oddechowych; zatrucie wziewne

Informacje o artykule
Tytuł

Toksyczne uszkodzenie dróg oddechowych

Czasopismo

Pneumonologia Polska

Numer

Tom 4, Nr 1 (2023)

Typ artykułu

Artykuł przeglądowy

Strony

19-26

Opublikowany online

2023-07-06

Wyświetlenia strony

299

Wyświetlenia/pobrania artykułu

23

Rekord bibliograficzny

Pneum Pol 2023;4(1):19-26.

Słowa kluczowe

oparzenia dróg oddechowych
zatrucie wziewne

Autorzy

Michał Zieliński
Jerzy Kozielski

Referencje (101)
  1. Walker P, Buehner M, Wood L, et al. Diagnosis and management of inhalation injury: an updated review. Critical Care. 2015; 19(1).
  2. Woodson LC. Diagnosis and grading of inhalation injury. J Burn Care Res. 2009; 30(1): 143–145.
  3. A WHO plan for burn prevention and care. Switzerland: World Health Organization, 2008.
  4. Matuszczak E, Dębek W, Chomicz A, et al. Analiza etiologii i epidemiologii oraz ocena wyników leczenia oparzeń u dzieci. Pediatria Polska. 2011; 86(3): 254–259.
  5. Chrzanowska-Wąsik M, Chemperek E, Sokołowski D, et al. Burn Analysis In Adult Patients Hospitalized In The East Centre Of Burn Treatment And Reconstructive Surgery In Łęczna. Journal of Education, Health and Sport. 2017; 7(4): 410–419.
  6. Ryan CM, Schoenfeld DA, Thorpe WP, et al. Objective estimates of the probability of death from burn injuries. N Engl J Med. 1998; 338(6): 362–366.
  7. Darling GE, Keresteci MA, Ibañez D, et al. Pulmonary complications in inhalation injuries with associated cutaneous burn. J Trauma. 1996; 40(1): 83–89.
  8. Enkhbaatar P, Traber DL. Pathophysiology of acute lung injury in combined burn and smoke inhalation injury. Clin Sci (Lond). 2004; 107(2): 137–143.
  9. Molitoris U, Vogt PM, Raymondos K. Inhalation injury. Respiratory Emergencies. 2006: 64–83.
  10. Moritz AR, Henriques FC, McLean R. The Effects of Inhaled Heat on the Air Passages and Lungs. Am J Pathol. 1945; 21(2).
  11. McCall JE, Cahill TJ. Respiratory care of the burn patient. Burn Care Rehabil. 2005; 26(3): 200–206.
  12. Harkema JR. Comparative aspects of nasal airway anatomy: relevance to inhalation toxicology. Toxicol Pathol. 1991; 19(4 Pt 1): 321–336.
  13. Mehran RJ. Fundamental and Practical Aspects of Airway Anatomy: From Glottis to Segmental Bronchus. Thorac Surg Clin. 2018; 28(2): 117–125.
  14. Gorguner M, Akgun M. Acute inhalation injury. Eurasian J Med. 2010; 42(1): 28–35.
  15. Jegal Y, Kim Y. Industrial Chemicals and Acute Lung injury with a Focus on Exposure Scenarios. Current Respiratory Medicine Reviews. 2016; 12(1): 44–55.
  16. Waheed I, Fuller A. Anhydrous ammonia pulmonary toxicity: A significant farming hazard. The Southwest Respiratory and Critical Care Chronicles. 2017; 5(19): 41.
  17. Saeed O, Boyer NL, Pamplin JC, et al. Inhalation Injury and Toxic Industrial Chemical Exposure. Mil Med. 2018; 183(suppl_2): 130–132.
  18. Miller K, Chang A. Acute inhalation injury. Med Clin North Am. 2003; 21(2): 533–557.
  19. O'kane GJ. Inhalation of ammonia vapour. Anaesthesia. 2007; 38(12): 1208–1213.
  20. Ammonia Toxicity Clinical Presentation: History, Physical Examination. https://emedicine.medscape.com/article/820298-clinical (Feb. 21, 2022).
  21. Castro RR, Lima SP, Sales AR, et al. Minute-Ventilation Variability during Cardiopulmonary Exercise Test is Higher in Sedentary Men Than in Athletes. Arq Bras Cardiol. 2017; 109(3): 185–190.
  22. Zuurbier M, Hoek G, van den Hazel P, et al. Minute ventilation of cyclists, car and bus passengers: an experimental study. Environ Health. 2009; 8: 48.
  23. Panis LI, Geus Bde, Vandenbulcke G, et al. Exposure to particulate matter in traffic: A comparison of cyclists and car passengers. Atmospheric Environment. 2010; 44(19): 2263–2270.
  24. Borron SW, Bebarta VS. Asphyxiants. Emerg Med Clin North Am. 2015; 33(1): 89–115.
  25. Tovar R, Leikin JB. Irritants and corrosives. Emerg Med Clin North Am. 2015; 33(1): 117–131.
  26. Ainslie G. Inhalational injuries produced by smoke and nitrogen dioxide. Respir Med. 1993; 87(3): 169–174.
  27. Veeravagu A, Yoon BC, Jiang B, et al. National trends in burn and inhalation injury in burn patients: results of analysis of the nationwide inpatient sample database. J Burn Care Res. 2015; 36(2): 258–265.
  28. Gupta K, Mehrotra M, Kumar P, et al. Smoke Inhalation Injury: Etiopathogenesis, Diagnosis, and Management. Indian J Crit Care Med. 2018; 22(3): 180–188.
  29. Von Essen S, Robbins RA, Thompson AB, et al. Organic dust toxic syndrome: an acute febrile reaction to organic dust exposure distinct from hypersensitivity pneumonitis. J Toxicol Clin Toxicol. 1990; 28(4): 389–420.
  30. Gordon T, Fine JM. Metal fume fever. Occup Med. 1993; 8(3): 504–517.
  31. Greenberg MI, Vearrier D. Metal fume fever and polymer fume fever. Clin Toxicol (Phila). 2015; 53(4): 195–203.
  32. Arwood R, Hammond J, Ward GG. Ammonia inhalation. J Trauma. 1985; 25(5): 444–447.
  33. Carlisle M, Lam A, Svendsen ER, et al. Chlorine-induced cardiopulmonary injury. Ann N Y Acad Sci. 2016; 1374(1): 159–167.
  34. D'Alessandro A, Kuschner W, Wong H, et al. Exaggerated responses to chlorine inhalation among persons with nonspecific airway hyperreactivity. Chest. 1996; 109(2): 331–337.
  35. Das R, Blanc PD. Chlorine gas exposure and the lung: a review. Toxicol Ind Health. 1993; 9(3): 439–455.
  36. Zellner T, Eyer F. Choking agents and chlorine gas - History, pathophysiology, clinical effects and treatment. Toxicol Lett. 2020; 320: 73–79.
  37. White CW, Martin JG. Chlorine Gas Inhalation: Human Clinical Evidence of Toxicity and Experience in Animal Models. Proceedings of the American Thoracic Society. 2010; 7(4): 257–263.
  38. van Aalst JA, Isakov R, Polk JD, et al. Hydrogen sulfide inhalation injury. J Burn Care Rehabil. 2000; 21(3): 248–253.
  39. Bott E, Dodd M. Suicide by hydrogen sulfide inhalation. Am J Forensic Med Pathol. 2013; 34(1): 23–25.
  40. Doujaiji B, Al-Tawfiq JA. Hydrogen sulfide exposure in an adult male. Ann Saudi Med. 2010; 30(1): 76–80.
  41. Sawaya A and Menezes RG, Hydrogen Sulfide Toxicity, StatPearls, Treasure Island: StatPearls Publishing, 2022. http://www.ncbi.nlm.nih.gov/books/NBK559264/ (Feb. 22, 2022).
  42. Belley R, Bernard N, Côté M, et al. Hyperbaric oxygen therapy in the management of two cases of hydrogen sulfide toxicity from liquid manure. CJEM. 2005; 7(4): 257–261.
  43. Asif MJ, Exline MC. Utilization of hyperbaric oxygen therapy and induced hypothermia after hydrogen sulfide exposure. Respir Care. 2012; 57(2): 307–310.
  44. Kumar A, Chaudhari S, Kush L, et al. Accidental inhalation injury of phosgene gas leading to acute respiratory distress syndrome. Indian J Occup Environ Med. 2012; 16(2): 88–89.
  45. Hobson ST, Richieri RA, Parseghian MH. Phosgene: toxicology, animal models, and medical countermeasures. Toxicol Mech Methods. 2021; 31(4): 293–307.
  46. Li W, Pauluhn J. Phosgene-induced acute lung injury (ALI): differences from chlorine-induced ALI and attempts to translate toxicology to clinical medicine. Clin Transl Med. 2017; 6(1): 19.
  47. Douglas WW, Hepper NG, Colby TV. Silo-filler's disease. Mayo Clin Proc. 1989; 64(3): 291–304.
  48. Amaza IP, Kreidy MP. Silo-Filler's Disease: One Health System's Experience and an Update of the Literature. J Agromedicine. 2020; 25(1): 8–13.
  49. Dai NT, Chen TM, Cheng TY, et al. The comparison of early fluid therapy in extensive flame burns between inhalation and noninhalation injuries. Burns. 1998; 24(7): 671–675.
  50. de La Cal MA, Cerdá E, García-Hierro P, et al. Pneumonia in patients with severe burns: a classification according to the concept of the carrier state. Chest. 2001; 119(4): 1160–1165.
  51. Foncerrada G, Culnan DM, Capek KD, et al. Inhalation injury in the burned patient. Ann Plast Surg. 2018; 80(3 Suppl 2): S98–S9S105.
  52. Youn YK, Lalonde C, Demling R. Oxidants and the pathophysiology of burn and smoke inhalation injury. Free Radic Biol Med. 1992; 12(5): 409–415.
  53. Burmeister DM, McIntyre MK, Beely B, et al. A model of recovery from inhalation injury and cutaneous burn in ambulatory swine. Burns. 2017; 43(6): 1295–1305.
  54. Molitoris U, Vogt PM, Raymondos K. Inhalation injury. Respiratory Emergencies. 2006: 64–83.
  55. Seidl RO, Todt I, Westhofen M, et al. Tracheal rupture in burns--a retrospective study. Burns. 2008; 34(4): 525–530.
  56. Lachiewicz AM, Hauck CG, Weber DJ, et al. Bacterial Infections After Burn Injuries: Impact of Multidrug Resistance. Clin Infect Dis. 2017; 65(12): 2130–2136.
  57. Ramos G, Cornistein W, Cerino GT, et al. Systemic antimicrobial prophylaxis in burn patients: systematic review. J Hosp Infect. 2017; 97(2): 105–114.
  58. Carr JA, Phillips BD, Bowling WM. The utility of bronchoscopy after inhalation injury complicated by pneumonia in burn patients: results from the National Burn Repository. J Burn Care Res. 2009; 30(6): 967–974.
  59. Navar PD, Saffle JR, Warden GD. Effect of inhalation injury on fluid resuscitation requirements after thermal injury. Am J Surg. 1985; 150(6): 716–720.
  60. Dvorak JE, Ladhani HA, Claridge JA. Review of Sepsis in Burn Patients in 2020. Surg Infect (Larchmt). 2021; 22(1): 37–43.
  61. Church D, Elsayed S, Reid O, et al. Burn wound infections. Clin Microbiol Rev. 2006; 19(2): 403–434.
  62. Desai MH, Mlcak R, Richardson J, et al. Reduction in mortality in pediatric patients with inhalation injury with aerosolized heparin/N-acetylcystine [correction of acetylcystine] therapy. J Burn Care Rehabil. 1998; 19(3): 210–212.
  63. Holt J, Saffle JR, Morris SE, et al. Use of inhaled heparin/N-acetylcystine in inhalation injury: does it help? J Burn Care Res. 2008; 29(1): 192–195.
  64. Rivero A, Elamin E, Nguyen Vu, et al. CAN NEBULIZED HEPARIN AND N-ACETYLCYSTEINE REDUCE ACUTE LUNG INJURY AFTER INHALATION LUNG INSULT? Chest. 2007; 132(4).
  65. Elsharnouby NM, Eid HEA, Abou Elezz NF, et al. Heparin/N-acetylcysteine: an adjuvant in the management of burn inhalation injury: a study of different doses. J Crit Care. 2014; 29(1): 182.e1–182.e4.
  66. Kashefi NS, Nathan JI, Dissanaike S. Does a Nebulized Heparin/N-acetylcysteine Protocol Improve Outcomes in Adult Smoke Inhalation? Plast Reconstr Surg Glob Open. 2014; 2(6): e165.
  67. McIntire AM, Harris SA, Whitten JA, et al. Outcomes Following the Use of Nebulized Heparin for Inhalation Injury (HIHI Study). J Burn Care Res. 2017; 38(1): 45–52.
  68. Zieliński M, Wróblewski P, Kozielski J. Is inhaled heparin a viable therapeutic option in inhalation injury? Adv Respir Med. 2019; 87(3): 184–188.
  69. Camporesi EM, Bosco G. Mechanisms of action of hyperbaric oxygen therapy. Undersea Hyperb Med. 2014; 41(3): 247–252.
  70. Edwards M, Cooper JS, “Hyperbaric Treatment Of Thermal Burns,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2022. http://www.ncbi.nlm.nih.gov/books/NBK470524/ (Oct. 10, 2022).
  71. Mueller EJ, Seger DL. Metal fume fever--a review. J Emerg Med. 1985; 2(4): 271–274.
  72. Bydash J, Kasmani R, Naraharisetty K. Metal fume-induced diffuse alveolar damage. J Thorac Imaging. 2010; 25(2): W27–W29.
  73. Seifert SA, Von Essen S, Jacobitz K, et al. Organic dust toxic syndrome: a review. J Toxicol Clin Toxicol. 2003; 41(2): 185–193.
  74. Madsen AM, Tendal K, Schlünssen V, et al. Organic dust toxic syndrome at a grass seed plant caused by exposure to high concentrations of bioaerosols. Ann Occup Hyg. 2012; 56(7): 776–788.
  75. Akira M, Suganuma N. Acute and subacute chemical-induced lung injuries: HRCT findings. Eur J Radiol. 2014; 83(8): 1461–1469.
  76. Winek J, Zych J, Langfort R, et al. [Obliterative bronchiolitis due to inhalation of toxic gases and fumes--case report]. Pneumonol Alergol Pol. 2014; 82(6): 576–581.
  77. Oh JS, Chung KK, Allen A, et al. Admission chest CT complements fiberoptic bronchoscopy in prediction of adverse outcomes in thermally injured patients. J Burn Care Res. 2012; 33(4): 532–538.
  78. Deutsch CJ, Tan A, Smailes S, et al. The diagnosis and management of inhalation injury: An evidence based approach. Burns. 2018; 44(5): 1040–1051.
  79. Endorf FW, Gamelli RL. Inhalation injury, pulmonary perturbations, and fluid resuscitation. J Burn Care Res. 2007; 28(1): 80–83.
  80. Spano S, Hanna S, Li Z, et al. Does Bronchoscopic Evaluation of Inhalation Injury Severity Predict Outcome? J Burn Care Res. 2016; 37(1): 1–11.
  81. Zieliński M, Wróblewski P, Kozielski J. Prognostic factors in patients with burns. Anaesthesiol Intensive Ther. 2020; 52(4): 330–335.
  82. Bur A, Wagner A, Röggla M, et al. Fatal pulmonary edema after nitric acid inhalation. Resuscitation. 1997; 35(1): 33–36.
  83. Polska Rada Resuscytacji. https://www.prc.krakow.pl/wytyczne_2021.html (Feb. 26, 2022).
  84. Toxic Substances Portal. ATSDR. tps://wwwn.cdc.gov/TSP/index.aspx (Feb. 26, 2022).
  85. Perkner JJ, Fennelly KP, Balkissoon R, et al. Irritant-associated vocal cord dysfunction. J Occup Environ Med. 1998; 40(2): 136–143.
  86. Meggs WJ, Elsheik T, Metzger WJ, et al. Nasal pathology and ultrastructure in patients with chronic airway inflammation (RADS and RUDS) following an irritant exposure. J Toxicol Clin Toxicol. 1996; 34(4): 383–396.
  87. Brooks SM, Weiss MA, Bernstein IL. Reactive airways dysfunction syndrome (RADS). Persistent asthma syndrome after high level irritant exposures. Chest. 1985; 88(3): 376–384.
  88. Burge PS, Moore VC, Robertson AS. Sensitization and irritant-induced occupational asthma with latency are clinically indistinguishable. Occup Med (Lond). 2012; 62(2): 129–133.
  89. Chang-Yeung M, Lam S, Kennedy SM, et al. Persistent asthma after repeated exposure to high concentrations of gases in pulpmills. Am J Respir Crit Care Med. 1994; 149(6): 1676–1680.
  90. Bhérer L, Cushman R, Courteau JP, et al. Survey of construction workers repeatedly exposed to chlorine over a three to six month period in a pulpmill: II. Follow up of affected workers by questionnaire, spirometry, and assessment of bronchial responsiveness 18 to 24 months after exposure ended. Occup Environ Med. 1994; 51(4): 225–228.
  91. Lemière C, Malo JL, Gautrin D. Nonsensitizing causes of occupational asthma. Med Clin North Am. 1996; 80(4): 749–774.
  92. Banauch GI, Alleyne D, Sanchez R, et al. Persistent hyperreactivity and reactive airway dysfunction in firefighters at the World Trade Center. Am J Respir Crit Care Med. 2003; 168(1): 54–62.
  93. Won YuH, Cho YS, Joo SoY, et al. Respiratory Characteristics in Patients With Major Burn Injury and Smoke Inhalation. J Burn Care Res. 2022; 43(1): 70–76.
  94. Smith D, Prezant D. Acute Inhalation injury. Handbook of Bioterrorism and Disaster Medicine. : 227–234.
  95. Garibaldi BT, Illei P, Danoff SK. Bronchiolitis. Immunol Allergy Clin North Am. 2012; 32(4): 601–619.
  96. Turton CW, Williams G, Green M. Cryptogenic obliterative bronchiolitis in adults. Thorax. 1981; 36(11): 805–810.
  97. Raghu G, Meyer KC. Cryptogenic organising pneumonia: current understanding of an enigmatic lung disease. Eur Respir Rev. 2021; 30(161).
  98. Garibaldi BT, West NE, Illei PB, et al. Bronchiolitis obliterans organizing pneumonia following a jalapeño grease fire. Chest. 2015; 147(2): e31–e33.
  99. Huh JW, Hong SB, Do KH, et al. Inhalation Lung Injury Associated with Humidifier Disinfectants in Adults. J Korean Med Sci. 2016; 31(12): 1857–1862.
  100. Malaviya R, Abramova EV, Rancourt RC, et al. Progressive Lung Injury, Inflammation, and Fibrosis in Rats Following Inhalation of Sulfur Mustard. Toxicol Sci. 2020; 178(2): 358–374.
  101. Rabinowitz PM, Siegel MD. Acute inhalation injury. Clin Chest Med. 2002; 23(4): 707–715.

Regulamin

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

Wydawcą serwisu jest VM Media Group sp. z o.o, Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl