Tom 3, Nr 3 (2022)
Artykuł przeglądowy
Wysłany: 2022-09-26
Zaakceptowany: 2022-09-26
Opublikowany online: 2023-01-13
Pobierz cytowanie

Wieloetniczne wartości należne parametrów badania spirometrycznego w zakresie wiekowym 3–95 lat: obowiązujące globalnie równania służące ocenie czynności układu oddechowego 2012

Philip H. Quanjer1, Sanja Stanojevic23, Tim J. Cole4, Xaver Baur5, Graham L. Hall6, Bruce H. Culver7, Paul L. Enright8, John L. Hankinson9, Mary S.M. Ip10, Jinping Zheng11, Janet Stocks2, Globalna inicjatywa oceny czynności ukła (Global Lung Function Initiative) ERS
Pneum Pol 2022;3(3):76-103.
Afiliacje
  1. Dept of Pulmonary Diseases and Dept of Paediatrics, Erasmus Medical Centre, Erasmus University, Rotterdam, Holandia
  2. Portex Respiratory Unit, UCL Institute of Child Health, London, Wielka Brytania
  3. Child Health Evaluative Sciences and Respiratory Medicine, The Hospital for Sick Children, Toronto, Kanada
  4. MRC Centre of Epidemiology for Child Health, UCL Institute of Child Health, London, Wielka Brytania
  5. Universita¨ Tsklinikum Hamburg-Eppendorf, Zentralinstitut fu¨r Arbeitsmedizin und Maritime Medizin, Hamburg, Niemcy
  6. Respiratory Medicine, Princess Margaret Hospital for Children, and School of Paediatric and Child Health and Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Australia
  7. Division of Pulmonary and Critical Care Medicine, Dept of Medicine, University of Washington, Seattle, Stany Zjednoczone
  8. Division of Public Health Sciences, University of Arizona, Tucson, Stany Zjednoczone
  9. Hankinson Consulting, Athens, Stany Zjednoczone
  10. Dept of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Chiny
  11. Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou, Chiny

dostęp płatny

Tom 3, Nr 3 (2022)
PRACE ORYGINALNE
Wysłany: 2022-09-26
Zaakceptowany: 2022-09-26
Opublikowany online: 2023-01-13

Streszczenie

Celem Grupy Roboczej było opracowanie ciągłych równań predykcyjnych oraz ich dolnych granic wartości prawidłowych dla wskaźników spirometrycznych, które miałyby zastosowanie na całym świecie. Globalna inicjatywa oceny czynności układu oddechowego Europejskiego Towarzystwa Pulmonologicznego uzyskała dostęp do ponad 160000 punktów danych pochodzących z 72 ośrodków w 33 krajach. Po wyeliminowaniu danych, które nie mogły być wykorzystane (głównie brakujące dane dotyczące grupy etnicznej, występowanie danych odstających) pozostało 97759 danych jednostkowych uzyskanych od zdrowych osób niepalących (55,3% kobiet) w wieku 2,5–95 lat.

Dane dotyczące czynności układu oddechowego zostały połączone i opracowano równania predykcyjne z zastosowaniem metody LMS, która umożliwia jednoczesne modelowanie średniej (µ), współczynnika zmienności (ς) i współczynnika skośności (λ) dla rodziny rozkładów.

Po odrzuceniu 23572 rekordów, głównie z powodu braku możliwości połączenia ich z innymi grupami etnicznymi lub geograficznymi, opracowano równania referencyjne dla zdrowych osób w wieku 3–95 lat rasy kaukaskiej (n = 57395), afroamerykańskiej (n = 3545) oraz północno- (n = 4992) i południowo-wschodnio-azjatyckiej (n = 8255). Wartości natężonej objętości wydechowej pierwszosekundowej (FEV1) oraz natężonej pojemności życiowej (FVC) różniły się proporcjonalnie pomiędzy grupami etnicznymi w porównaniu z rasą kaukaską, tak że wartość FEV1/FVC pozostawała praktycznie niezależna od grupy etnicznej. W przypadku osób, które nie były reprezentowane przez wymienione cztery grupy etniczne lub osób o mieszanym pochodzeniu etnicznym, w celu ułatwienia interpretacji do czasu opracowania bardziej odpowiedniego rozwiązania przedstawiono złożone równanie uzyskane z uśrednienia powyższych równań.

Obecnie dostępne są równania predykcyjne dla parametrów badania spirometrycznego w przedziale wiekowym 3–95 lat, które obejmują odpowiednie zależne od wieku dolne granice wartości prawidłowych. Mogą być one stosowane na całym świecie w odniesieniu do różnych grup etnicznych. Dodatkowe dane pochodzące z subkontynentu indyjskiego oraz krajów arabskich, polinezyjskich i latynoamerykańskich, a także z Afryki, przyczynią się do dalszego udoskonalenia tych równań.

Streszczenie

Celem Grupy Roboczej było opracowanie ciągłych równań predykcyjnych oraz ich dolnych granic wartości prawidłowych dla wskaźników spirometrycznych, które miałyby zastosowanie na całym świecie. Globalna inicjatywa oceny czynności układu oddechowego Europejskiego Towarzystwa Pulmonologicznego uzyskała dostęp do ponad 160000 punktów danych pochodzących z 72 ośrodków w 33 krajach. Po wyeliminowaniu danych, które nie mogły być wykorzystane (głównie brakujące dane dotyczące grupy etnicznej, występowanie danych odstających) pozostało 97759 danych jednostkowych uzyskanych od zdrowych osób niepalących (55,3% kobiet) w wieku 2,5–95 lat.

Dane dotyczące czynności układu oddechowego zostały połączone i opracowano równania predykcyjne z zastosowaniem metody LMS, która umożliwia jednoczesne modelowanie średniej (µ), współczynnika zmienności (ς) i współczynnika skośności (λ) dla rodziny rozkładów.

Po odrzuceniu 23572 rekordów, głównie z powodu braku możliwości połączenia ich z innymi grupami etnicznymi lub geograficznymi, opracowano równania referencyjne dla zdrowych osób w wieku 3–95 lat rasy kaukaskiej (n = 57395), afroamerykańskiej (n = 3545) oraz północno- (n = 4992) i południowo-wschodnio-azjatyckiej (n = 8255). Wartości natężonej objętości wydechowej pierwszosekundowej (FEV1) oraz natężonej pojemności życiowej (FVC) różniły się proporcjonalnie pomiędzy grupami etnicznymi w porównaniu z rasą kaukaską, tak że wartość FEV1/FVC pozostawała praktycznie niezależna od grupy etnicznej. W przypadku osób, które nie były reprezentowane przez wymienione cztery grupy etniczne lub osób o mieszanym pochodzeniu etnicznym, w celu ułatwienia interpretacji do czasu opracowania bardziej odpowiedniego rozwiązania przedstawiono złożone równanie uzyskane z uśrednienia powyższych równań.

Obecnie dostępne są równania predykcyjne dla parametrów badania spirometrycznego w przedziale wiekowym 3–95 lat, które obejmują odpowiednie zależne od wieku dolne granice wartości prawidłowych. Mogą być one stosowane na całym świecie w odniesieniu do różnych grup etnicznych. Dodatkowe dane pochodzące z subkontynentu indyjskiego oraz krajów arabskich, polinezyjskich i latynoamerykańskich, a także z Afryki, przyczynią się do dalszego udoskonalenia tych równań.

Pobierz cytowanie

Słowa kluczowe

dolna granica normy, wartości należne, spirometria, modelowanie statystyczne, z-score

Informacje o artykule
Tytuł

Wieloetniczne wartości należne parametrów badania spirometrycznego w zakresie wiekowym 3–95 lat: obowiązujące globalnie równania służące ocenie czynności układu oddechowego 2012

Czasopismo

Pneumonologia Polska

Numer

Tom 3, Nr 3 (2022)

Typ artykułu

Artykuł przeglądowy

Strony

76-103

Opublikowany online

2023-01-13

Wyświetlenia strony

417

Wyświetlenia/pobrania artykułu

22

Rekord bibliograficzny

Pneum Pol 2022;3(3):76-103.

Słowa kluczowe

dolna granica normy
wartości należne
spirometria
modelowanie statystyczne
z-score

Autorzy

Philip H. Quanjer
Sanja Stanojevic
Tim J. Cole
Xaver Baur
Graham L. Hall
Bruce H. Culver
Paul L. Enright
John L. Hankinson
Mary S.M. Ip
Jinping Zheng
Janet Stocks
Globalna inicjatywa oceny czynności ukła (Global Lung Function Initiative) ERS

Referencje (134)
  1. Global Lung Function Initiative. Lung Function in Growth and Aging. Ostatnia aktualizacja: 5 września 2012 r. www.lungfunction.org (24 marca 2012 r.).
  2. NIH Policy on reporting race and ethnicity data: subjects in Clinical Research. Ostatnia aktualizacja: 6 czerwca 2006 r. http://grants.nih.gov/grants/guide/notice- files/not-od-01-053.html (24 marca 2012 r.).
  3. Schrader PC, Quanjer PH, van Zomeren BC, et al. Changes in the FEV1-height relationship during pubertal growth. Bull Eur Physiopathol Respir. 1984; 20(4): 381–388.
  4. Degroodt EG, Quanjer PH, Wise ME, et al. Changing relationships between stature and lung volumes during puberty. Respir Physiol. 1986; 65(2): 139–153.
  5. Sherrill DL, Morgan WJ, Taussig LM, et al. A mathematical procedure for estimating the spatial relationships between lung function, somatic growth, and maturation. Pediatr Res. 1989; 25(3): 316–321.
  6. Wang X, Dockery DW, Wypij D, et al. Pulmonary function between 6 and 18 years of age. Pediatr Pulmonol. 1993; 15(2): 75–88.
  7. Polgar G, Promadhat V. Pulmonary Function Testing in Children: Techniques and Standards. Saunders, Philadelphia 1971.
  8. Quanjer PH, Tammeling GJ, Cotes JE, et al. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl. 1993; 16: 5–40.
  9. Quanjer PH, Borsboom GJ, Brunekreef B, et al. Spirometric reference values for white European children and adolescents: Polgar revisited. Pediatr Pulmonol. 1995; 19(2): 135–142.
  10. Pérez-Padilla R, Valdivia G, Muiño A, et al. [Spirometric reference values in 5 large Latin American cities for subjects aged 40 years or over]. Arch Bronconeumol. 2006; 42(7): 317–325.
  11. Rigby RA, Stasinopoulos DM. Generalized additive models for location, scale and shape (with discussion). Appl Statist. 2005; 54: 507–554.
  12. Stanojevic S, Wade A, Stocks J, et al. Reference ranges for spirometry across all ages: a new approach. Am J Respir Crit Care Med. 2008; 177(3): 253–260.
  13. Stanojevic S, Wade A, Cole TJ, et al. Asthma UK Spirometry Collaborative Group. Spirometry centile charts for young Caucasian children: the Asthma UK Collaborative Initiative. Am J Respir Crit Care Med. 2009; 180(6): 547–552.
  14. Quanjer PH, Stocks J, Cole TJ, et al. Global Lungs Initiative. Influence of secular trends and sample size on reference equations for lung function tests. Eur Respir J. 2011; 37(3): 658–664.
  15. Quanjer PH, Stanojevic S, Cole TJ, et al. ERS Global Lung Function Initiative, Global Lungs Initiative, Global Lungs Initiative, Global Lungs Initiative. Changes in the FEV₁/FVC ratio during childhood and adolescence: an intercontinental study. Eur Respir J. 2010; 36(6): 1391–1399.
  16. Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005; 26(5): 948–968.
  17. Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med. 1999; 159(1): 179–187.
  18. Global Lung Function Initiative. Lung Function in Growth and Aging. Statutes. Ostatnia aktualizacja: 5 września 2012 r. www.lungfunction.org/statutes.html (24 marca 2012 r.).
  19. Cole TJ, Stanojevic S, Stocks J, et al. Age- and size-related reference ranges: a case study of spirometry through childhood and adulthood. Stat Med. 2009; 28(5): 880–898.
  20. van Buuren S, Fredriks M. Worm plot: a simple diagnostic device for modelling growth reference curves. Stat Med. 2001; 20(8): 1259–1277.
  21. Pérez-Padilla R, Regalado-Pineda J, Rojas M, et al. Spirometric function in children of Mexico City compared to Mexican-American children. Pediatr Pulmonol. 2003; 35(3): 177–183.
  22. Ip MSM, Karlberg EM, Karlberg JPE, et al. Lung function reference values in Chinese children and adolescents in Hong Kong. I. Spirometric values and comparison with other populations. Am J Respir Crit Care Med. 2000; 162: 424–429.
  23. Ip MSM, Ko FWS, Lau ACW, et al. Hong Kong Thoracic Society and American College of Chest Physicians (Hong Kong and Macau Chapter). Updated spirometric reference values for adult Chinese in Hong Kong and implications on clinical utilization. Chest. 2006; 129(2): 384–392.
  24. Pan WH, Chen JY, Haung SL, et al. Reference spirometric values in healthy Chinese neversmokers in two townships of Taiwan. Chin J Physiol. 1997; 40(3): 165–174.
  25. Dejsomritrutai W, Nana A, Maranetra KN, et al. Reference spirometric values for healthy lifetime nonsmokers in Thailand. J Med Assoc Thai. 2000; 83(5): 457–466.
  26. Choi JK, Paek D, Lee JOh. Normal predictive values of spirometry in Korean population. Tuberc Respir Dis. 2005; 58: 230–242.
  27. Wu Y, Zhang Z, Gang B, et al. [Predictive equations and analysis of influence factors of lung ventilation based on a large occupational population in North China]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2005; 23(5): 321–325.
  28. Zhang Ql, Zheng Jp, Yuan Bt, et al. [Feasibility and predicted equations of spirometry in Shenzhen preschool children]. Zhonghua Er Ke Za Zhi. 2005; 43(11): 843–848.
  29. National Health and Nutrition Examination Survey IV. National Center for Health Statistics. Data Dissemination Branch, Hyattsville, MD, USA.
  30. Golshan M, Nematbakhsh M, Amra B, et al. Spirometric reference values in a large Middle Eastern population. Eur Respir J. 2003; 22: 529–534.
  31. Bougrida M, Ben Saad H, Kheireddinne Bourahli M, et al. [Spirometric reference equations for Algerians aged 19 to 73 years]. Rev Mal Respir. 2008; 25(5): 577–590.
  32. Amra B, Asadi M, Salehi H, et al. Normative reference values for lung transfer factor in Isfahan, Iran. Respirology. 2006; 11(4): 477–481.
  33. Trabelsi Y, Ben Saad H, Tabka Z, et al. Spirometric reference values in Tunisian children. Respiration. 2004; 71(5): 511–518.
  34. Trabelsi Y, Paries J, Richalet JP, et al. Factors affecting the development of lung function in Tunisian children. Am J Hum Biol. 2008; 20(6): 716–725.
  35. Ben Sa, Tfifha M, et al. HarabiI Factors influencing ventilatory variables of Tunisian women aged 45 years and more. Rev Mal Respir. 2006; 23: 324–338.
  36. Ben Sa, Rouatbi S, Raoudha S, et al. Capacité vitale et débits maximaux expiratoires dans une population nord-africaine aˆ ge´e de plus de 60 ans. Influence des donné es anthropométriques et de la parité [Vital capacity and peak expiratory flow rates in a North-African population aged 60 years and over: influence of anthropometric data and parity]. Rev Mal Respir. 2003; 20: 521–530.
  37. Trabelsi Y, Tabka Z, Richalet JP, et al. Spirometric values in Tunisian children: relationship with pubertal status. Ann Hum Biol. 2007; 34(2): 195–205.
  38. Raju PS, Prasad KVV, Ramana YV, et al. Pulmonary function tests in Indian girls-prediction equations. Indian J Pediatr. 2004; 71(10): 893–897.
  39. Raju PS, Prasad K, Ramana YV, et al. Pulmonary function tests in Indian girls — Prediction equations. The Indian Journal of Pediatrics. 2004; 71(10): 893–897.
  40. Raju PS, Prasad KVV, et al. Venkata Ramana Y Influence of socioeconomic status on lung function and prediction equations in Indian children. Pediatr Pulmonol. 2005; 39: 528–536.
  41. Fulambarker A, Copur AS, Javeri A, et al. Reference values for pulmonary function in Asian Indians living in the United States. Chest. 2004; 126(4): 1225–1233.
  42. Al-Riyami BMM, Al-Rawas OA, Hassan MO. Normal spirometric reference values for Omani children and adolescents. Respirology. 2004; 9: 387–391.
  43. Al-Rawas OA, Baddar S, Al-Maniri AA, et al. Normal spirometric reference values for Omani adults. Lung. 2009; 187(4): 245–251.
  44. Yamaguchi-Kabata Y, Nakazono K, Takahashi A, et al. Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects on population-based association studies. Am J Hum Genet. 2008; 83(4): 445–456.
  45. Omoto K, Saitou N. Genetic origins of the Japanese: a partial support for the dual structure hypothesis. Am J Phys Anthropol. 1997; 102(4): 437–446, doi: 10.1002/(SICI)1096-8644(199704)102:4<437::AID-AJPA1>3.0.CO;2-P.
  46. Kiefer EM, Hankinson JL, Barr RG. Similar relation of age and height to lung function among Whites, African Americans, and Hispanics. Am J Epidemiol. 2011; 173(4): 376–387.
  47. Quanjer PH, Hall GL, Stanojevic S, et al. Global Lungs Initiative. Age- and height-based prediction bias in spirometry reference equations. Eur Respir J. 2012; 40(1): 190–197.
  48. Probst-Hensch NM, Curjuric I, Pierre-Olivier B, et al. Lung function in healthy never smoking adults: reference values and lower limits of normal of a Swiss population. Thorax. 1996; 51(3): 277–283.
  49. Falaschetti E, Laiho J, Primatesta P, et al. Prediction equations for normal and low lung function from the Health Survey for England. Eur Respir J. 2004; 23(3): 456–463.
  50. Kuster SP, Kuster D, Schindler C, et al. Reference equations for lung function screening of healthy never-smoking adults aged 18-80 years. Eur Respir J. 2008; 31(4): 860–868.
  51. Glindmeyer HW, Diem JE, Jones RN, et al. Non-comparability of longitudinally and cross-sectionally determined annual change in spirometry. Am Rev Respir Dis. 1982; 125: 544–548.
  52. Burrows B, Lebowitz MD, Camilli AE, et al. Longitudinal changes in forced expiratory volume in one second in adults. Methodologic considerations and findings in healthy nonsmokers. Am Rev Respir Dis. 1986; 133(6): 974–980.
  53. Jedrychowski W, Krzyzanowski M, Wysocki M. Changes in lung function determined longitudinally compared with decline assessed cross-sectionally. The Cracow Study. Eur J Epidemiol. 1986; 2(2): 134–138.
  54. Vollmer WM, Johnson LR, McCamant LE, et al. Longitudinal versus cross-sectional estimation of lung function decline--further insights. Stat Med. 1988; 7(6): 685–696.
  55. Ware JH, Dockery DW, Louis TA, et al. Longitudinal and cross-sectional estimates of pulmonary function decline in never-smoking adults. Am J Epidemiol. 1990; 132(4): 685–700.
  56. Vollmer WM. Reconciling cross-sectional with longitudinal observations on annual decline. Occup Med. 1993; 8(2): 339–351.
  57. van Pelt W, Borsboom GJ, Rijcken B, et al. Discrepancies between longitudinal and cross-sectional change in ventilatory function in 12 years of follow-up. Am J Respir Crit Care Med. 1994; 149(5): 1218–1226.
  58. Xu X, Laird N, Dockery DW, et al. Age, period, and cohort effects on pulmonary function in a 24-year longitudinal study. Am J Epidemiol. 1995; 141(6): 554–566.
  59. Wang ML, McCabe L, Hankinson JL, et al. Longitudinal and cross-sectional analyses of lung function in steelworkers. Am J Respir Crit Care Med. 1996; 153(6 Pt 1): 1907–1913.
  60. Kerstjens HA, Rijcken B, Schouten JP, et al. Decline of FEV1 by age and smoking status: facts, figures, and fallacies. Thorax. 1997; 52(9): 820–827.
  61. Wang ML, Petsonk EL. Repeated measures of FEV1 over six to twelve months: what change is abnormal? J Occup Environ Med. 2004; 46(6): 591–595.
  62. Hnizdo E, Sircar K, Yan T, et al. Limits of longitudinal decline for the interpretation of annual changes in FEV1 in individuals. Occup Environ Med. 2007; 64(10): 701–707.
  63. Quanjer PH, Borsboom GJ, Kivastik J, et al. Cross-sectional and longitudinal spirometry in children and adolescents: interpretative strategies. Am J Respir Crit Care Med. 2008; 178(12): 1262–1270.
  64. Cotes JE, Gilson JC. Effects of inactivity, weight gain and antitubercular chemotherapy upon lung function in working coal-miners. Ann Occup Hyg. 1967; 10(4): 327–335.
  65. Bande J, Clément J, Van de Woestijne KP. The influence of smoking habits and body weight on vital capacity and FEV1 in male Air Force personnel: a longitudinal and cross-sectional analysis. Am Rev Respir Dis. 1980; 122(5): 781–790.
  66. Chen Y, Horne SL, Dosman JA. Body weight and weight gain related to pulmonary function decline in adults: a six year follow up study. Thorax. 1993; 48(4): 375–380.
  67. Chinn DJ, Cotes JE, Reed JW. Longitudinal effects of change in body mass on measurements of ventilatory capacity. Thorax. 1996; 51(7): 699–704.
  68. Beverley AC, Blizzard CL, Schmidt MD, et al. Longitudinal associations of adiposity with adult lung function in the Childhood Determinants of Adult Health (CDAH) study. Obesity. 2011; 19: 2069–2075.
  69. Parker JM, Dillard TA, Phillips YY. Impact of using stated instead of measured height upon screening spirometry. Am J Respir Crit Care Med. 1994; 150(6 Pt 1): 1705–1708.
  70. Brener ND, Mcmanus T, Galuska DA, et al. Reliability and validity of self-reported height and weight among high school students. J Adolesc Health. 2003; 32(4): 281–287.
  71. Braziuniene I, Wilson TA, Lane AH. Accuracy of self-reported height measurements in parents and its effect on mid-parental target height calculation. BMC Endocr Disord. 2007; 7: 2.
  72. Jansen W, van de Looij-Jansen PM, Ferreira I, et al. Differences in measured and self-reported height and weight in Dutch adolescents. Ann Nutr Metab. 2006; 50(4): 339–346.
  73. Lim LLy, Seubsman SA, Sleigh A. Validity of self-reported weight, height, and body mass index among university students in Thailand: Implications for population studies of obesity in developing countries. Popul Health Metr. 2009; 7: 15.
  74. Wada K, Tamakoshi K, Tsunekawa T, et al. Validity of self-reported height and weight in a Japanese workplace population. Int J Obes (Lond). 2005; 29(9): 1093–1099.
  75. Connor Go, Shields M, Tremblay M. Methodological issues in anthropometry: Self-reported versus measured height and weight. Proceedings of Statistics Canada Symposium. 2008.
  76. Rossiter CE, Weill H. Ethnic differences in lung function: evidence for proportional differences. Int J Epidemiol. 1974; 3(1): 55–61.
  77. Sobol BJ. Assessment of ventilatory abnormality in the asymptomatic subject: an exercise in futility. Thorax. 1966; 2: 445–449.
  78. Sobol BJ, Sobol PG. Per cent of predicted as the limit of normal in pulmonary function testing: a statistically valid approach. Thorax. 1979; 34(1): 1–3.
  79. Miller MR, Pincock AC. Predicted values: how should we use them? Thorax. 1988; 43(4): 265–267.
  80. Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005; 26(5): 948–968.
  81. Miller MR, Quanjer PH, Swanney MP, et al. Interpreting lung function data using 80% predicted and fixed thresholds misclassifies more than 20% of patients. Chest. 2011; 139(1): 52–59.
  82. Rosenthal M, Bain SH, Cramer D, et al. Lung function in white children aged 4 to 19 years: I--Spirometry. Thorax. 1993; 48(8): 794–802.
  83. Zapletal A, Paul T, Samanek N. Die Bedeutung heutiger Methoden der Lungen-funktionsdiagnostik zur Feststellung einer Obstruktion der Atemwege bei Kindern und Jugendlichen [Significance of contemporary methods of lung function testing for the detection of airway obstruction in children and adolescents]. Z Erkr Atmungsorgane. 1977; 149: 343–371.
  84. Crapo RO, Morris AH, Gardner RM. Reference spirometric values using techniques and equipment that meet ATS recommendations. Am Rev Respir Dis. 1981; 123(6): 659–664.
  85. Knudson RJ, Lebowitz MD, Holberg CJ, et al. Changes in the normal maximal expiratory flow-volume curve with growth and aging. Am Rev Respir Dis. 1983; 127(6): 725–734.
  86. Perkins JM, Khan KT, Smith GD, et al. Patterns and trends of adult height in India in 2005-2006. Econ Hum Biol. 2011; 9(2): 184–193.
  87. Gautam RK, Adak DK. Nutrition and Genetic Variation among Central Indian Tribes. Proceedings National Symposium of Tribal Health. Jabalpur, Regional Medical Research Centre for Tribals, Indian Council of Medical Research, 2007; str. : 141–153.
  88. Ostatnia aktualizacja: 21 października 2007 r. http://nsdl.niscair.res.in/bitstream/123456789/339/1/pdf+4.4+NISCAIR-Racial-Ethnic-Relgious-Linguistic-Groups-India-Text- Revised.pdf (24 marca 2012 r.).
  89. Malina RM, Brown KH, Zavaleta AN. Relative lower extremity length in Mexican American and in American black and white youth. Am J Phys Anthropol. 1987; 72(1): 89–94.
  90. Hsi BP, Hsu KH, Jenkins DE, et al. Ventilatory functions of normal children and young adults--Mexican-American, white, and black. I. Spirometry. J Pediatr. 1979; 95(1): 14–23.
  91. Maca-Meyer N, González AM, Larruga JM, et al. Major genomic mitochondrial lineages delineate early human expansions. BMC Genet. 2001; 2: 13.
  92. Zheng J, Zhong N. Normative values of pulmonary function testing in Chinese adults. Chin Med J (Engl). 2002; 115(1): 50–54.
  93. Etler DA. Recent developments in the study of human biology in China: a review. Hum Biol. 1992; 64: 567–585.
  94. Zhang HG, Chen YF, Ding M, et al. Dermatoglyphics from all Chinese ethnic groups reveal geographic patterning. PLoS One. 2010; 5(1): e8783.
  95. Crapo RO, Jensen RL, Oyunchimeg M, et al. Differences in spirometry reference values: a statistical comparison of a Mongolian and a Caucasian study. Eur Respir J. 1999; 13(3): 606–609.
  96. Morgan S. Richer and taller: Stature and living standards in China, 1979-1995. The China Journal. 2000; 44: 1–39.
  97. Morgan S. Stature and famine in China: The welfare of the survivors of the great leap forward famine, 1959-61. SSRN Electronic Journal. .
  98. Morgan SL. Biological indicators of change in the standard of living in China during the 20th century. In: Komlos J, Baten J. ed. Studies on the Biological Standard of Living in Comparative Perspective. Franz Steiner Verlag, Stuttgart 1998: 7–34.
  99. Lin WS, Zhu FC, Chen AC, et al. Physical growth of Chinese school children 7-18 years, in 1985. Ann Hum Biol. 1992; 19(1): 41–55.
  100. Ashizawa K, Tanamachi N, Kato S, et al. Growth of height and leg length of children in Beijing and Xilinhot, China. Anthropological Science. 2008; 116(1): 67–76.
  101. Weitz CA, Garruto RM, Chin CT, et al. Morphological growth and thorax dimensions among Tibetan compared to Han children, adolescents and young adults born and raised at high altitude. Ann Hum Biol. 2004; 31(3): 292–310.
  102. Tanner JM, Hayashi T, Preece MA, et al. Increase in length of leg relative to trunk in Japanese children and adults from 1957 to 1977: comparison with British and with Japanese Americans. Ann Hum Biol. 1982; 9(5): 411–423.
  103. Leung SS, Lau JT, Xu YY, et al. Secular changes in standing height, sitting height and sexual maturation of Chinese--the Hong Kong Growth Study, 1993. Ann Hum Biol. 1996; 23(4): 297–306.
  104. Ministry of Knowledge Economy. Korean Agency for Technology and Standards. https://www.kats.go.kr/english/home/%20home.asp?OlapCode5ATSU15.
  105. Swanney MP, Jensen RL, Crichton DA, et al. FEV(6) is an acceptable surrogate for FVC in the spirometric diagnosis of airway obstruction and restriction. Am J Respir Crit Care Med. 2000; 162(3 Pt 1): 917–919.
  106. Thoracic Society of Australia and New Zealand. Accreditation. www.thoracic.org.au/accreditation (24 marca 2012 r.).
  107. American Thoracic Society. Standardization of Spirometry, 1994 Update. Am J Respir Crit Care Med. 1995; 152(3): 1107–1136.
  108. Tanner JM. Growth as a target-seeking function: catch-up and -down growth in man. In: Falkner F. ed. Human Growth: A Comprehensive Treatise. Vol. 2. Plenum Press, New York 1986: 171–209.
  109. Cole TJ. The secular trend in human physical growth: a biological view. Econ Hum Biol. 2003; 1(2): 161–168.
  110. Raju PS, Prasad KVV, Ramana YV, et al. Influence of socioeconomic status on lung function and prediction equations in Indian children. Pediatr Pulmonol. 2005; 39(6): 528–536.
  111. Harik-Khan RI, Muller DC, Wise RA. Racial difference in lung function in African-American and White children: effect of anthropometric, socioeconomic, nutritional, and environmental factors. Am J Epidemiol. 2004; 160(9): 893–900.
  112. Whitrow MJ, Harding S. Ethnic differences in adolescent lung function: anthropometric, socioeconomic, and psychosocial factors. Am J Respir Crit Care Med. 2008; 177(11): 1262–1267.
  113. Wu T, Mendola P, Buck GM. Ethnic differences in the presence of secondary sex characteristics and menarche among US girls: the Third National Health and Nutrition Examination Survey, 1988-1994. Pediatrics. 2002; 110(4): 752–757.
  114. Hsi B, Hsu K, Jenkins D. Ventilatory functions of normal children and young adults: Mexican-American, white, and black. III. Sitting height as a predictor. The Journal of Pediatrics. 1983; 102(6): 860–865.
  115. Korotzer B, Ong S, Hansen JE. Ethnic differences in pulmonary function in healthy nonsmoking Asian-Americans and European-Americans. Am J Respir Crit Care Med. 2000; 161(4 Pt 1): 1101–1108.
  116. Donnelly PM, Yang TS, Peat JK, et al. What factors explain racial differences in lung volumes? Eur Respir J. 1991; 4(7): 829–838.
  117. White NW, Hanley JH, Lalloo UG, et al. Review and analysis of variation between spirometric values reported in 29 studies of healthy African adults. Am J Respir Crit Care Med. 1994; 150(2): 348–355.
  118. Yang TS, Peat J, Keena V, et al. A review of the racial differences in the lung function of normal Caucasian, Chinese and Indian subjects. Eur Respir J. 1991; 4(7): 872–880.
  119. Greksa LP, Spielvogel H, Paz-Zamora M, et al. Effect of altitude on the lung function of high altitude residents of European ancestry. Am J Phys Anthropol. 1988; 75(1): 77–85.
  120. Burchard EG, Ziv E, Coyle N, et al. The importance of race and ethnic background in biomedical research and clinical practice. N Engl J Med. 2003; 348(12): 1170–1175.
  121. Cooper RS, Kaufman JS, Ward R. Race and genomics. N Engl J Med. 2003; 348(12): 1166–1170.
  122. Risch N, Burchard E, Ziv E, et al. Categorization of humans in biomedical research: genes, race and disease. Genome Biol. 2002; 3(7): comment2007.
  123. Kumar R, Seibold MA, Aldrich MC, et al. Genetic ancestry in lung-function predictions. N Engl J Med. 2010; 363(4): 321–330.
  124. Parra EJ, Kittles RA, Argyropoulos G, et al. Ancestral proportions and admixture dynamics in geographically defined African Americans living in South Carolina. Am J Phys Anthropol. 2001; 114(1): 18–29, doi: 10.1002/1096-8644(200101)114:1<18::AID-AJPA1002>3.0.CO;2-2.
  125. Jorde LB, Wooding SP. Genetic variation, classification and ‘‘race’’. Nat Genet. 2004; 36(Supl. 11): S28–S33.
  126. Yaeger R, Avila-Bront A, Abdul K, et al. Comparing genetic ancestry and self-described race in african americans born in the United States and in Africa. Cancer Epidemiol Biomarkers Prev. 2008; 17(6): 1329–1338.
  127. Choudhry S, Taub M, Mei R, et al. Genome-wide screen for asthma in Puerto Ricans: evidence for association with 5q23 region. Hum Genet. 2008; 123(5): 455–468.
  128. Halder I, Yang BZ, Kranzler HR, et al. Measurement of admixture proportions and description of admixture structure in different U.S. populations. Hum Mutat. 2009; 30(9): 1299–1309.
  129. Lai CQ, Tucker KL, Choudhry S, et al. Population admixture associated with disease prevalence in the Boston Puerto Rican health study. Hum Genet. 2009; 125(2): 199–209.
  130. Rotimi CN, Jorde LB. Ancestry and disease in the age of genomic medicine. N Engl J Med. 2010; 363(16): 1551–1558.
  131. Fulambarker A, Copur AS, Cohen ME, et al. Comparison of pulmonary function in immigrant vs US-born Asian Indians. Chest. 2010; 137(6): 1398–1404.
  132. American Thoracic Society. Lung function testing: selection of reference values and interpretative strategies. Am Rev Resp Dis. 1991; 144: 1202–1218.
  133. Levy ML, Quanjer PH, Booker R, et al. Diagnostic spirometry in primary care. Proposed standards for general practice compliant with American Thoracic Society and European Respiratory Society recommendations. Prim Care Respir J. 2009; 18: 130–147.
  134. Corey PN, Ashley MJ, Chan-Yeung M. Racial differences in lung function: search for proportional relationships. J Occup Med. 1979; 21(6): 395–398.

Regulamin

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

Wydawcą serwisu jest VM Media Group sp. z o.o, Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl