Tom 5, Nr 2 (2024)
Wytyczne / stanowisko ekspertów
Opublikowany online: 2024-08-12
Wyświetlenia strony 301
Wyświetlenia/pobrania artykułu 19
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Standardy opieki w ramach leczenia przyczynowego (w tym z użyciem modulatorów białka CFTR) u osób chorujących na mukowiscydozę*

Kevin W. Southern1, Carlo Castellani2, Elise Lammertyn3, Alan Smyth4, Donald VanDevanter5, Silke van Koningsbruggen-Rietschel6, Jürg Barben7, Amanda Bevan8, Edwin Brokaar9, Sarah Collins4, Gary J. Connett10, Thomas W.V. Daniels11, Jane Davies, Dimitri Declercq, Silvia Gartner, Andrea Gramegna, Naomi Hamilto, Jenny Hauser, Nataliya Kashirskaya, Laurence Kessler, Jacqueline Lowdon, Halyna Makukh, Clemence Martin, Lisa Morrison, Dilip Nazareth, Jacquelien Noordhoek, Ciaran O’Neill, Elizabeth Owen, Helen Oxley, Karen S. Raraigh, Caroline Raynal, Karen Robinson, Jobst Roehmel, Carsten Schwarz, Isabelle Sermet, Michal Shteinberg, Ian Sinha, Constance Takawira, Peter van Mourik, Marieke Verkleij, Michael D. Waller, Alistair Duff
DOI: 10.5603/pp.100991
Pneum Pol 2024;5(2):45-68.

Streszczenie

W mukowiscydozie (CF, cystic fibrosis) rozpoczęła się era terapii „szytej na miarę”, dostosowanej do wariantów genetycznych w genie kodującym błonowy regulator przewodnictwa związany z mukowiscydozą (CFTR, Cystic Fibrosis Transmembrane Conductance Regulator). Modulatory białka CFTR, pierwsze dostępne leczenie przyczynowe, zmieniły sposób leczenia mukowiscydozy. W najnowszych standardach opieki opublikowanych w 2018 roku przez Europejskie Towarzystwo Mukowiscydozy nie uwzględniono wytycznych dotyczących leczenia przyczynowego, ponieważ modulatory białka CFTR były nową opcją terapeutyczną. Opracowaliśmy tymczasowe standardy mające na celu zapewnienie pracownikom ochrony zdrowia wskazówek dotyczących prowadzenia terapii przyczynowej u chorych na mukowiscydozę. Poniżej przedstawiamy oparte na dowodach naukowych wytyczne dotyczące całego zakresu opieki, ustalone na podstawie dowodów z przeglądów systematycznych i opinii ekspertów. Twierdzenia zostały ocenione przez kluczowych interesariuszy z zastosowaniem metodyki Delphi i w przypadku wszystkich twierdzeń po jednym etapie konsultacji uzyskano zgodność na poziomie przekraczającym 80%. Omawiane są kwestie związane z dostępnością i istnieje jednoznaczna zgodność opinii, że wszyscy kwalifikujący się chorzy na mukowiscydozę powinni mieć dostęp do leczenia przyczynowego.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Castellani C, Duff AJA, Bell SC, et al. ECFS best practice guidelines: the 2018 revision. J Cyst Fibros. 2018; 17(2): 153–178.
  2. Munck A, Mayell SJ, Winters V, et al. ECFS Neonatal Screening Working Group. Cystic Fibrosis Screen Positive, Inconclusive Diagnosis (CFSPID): A new designation and management recommendations for infants with an inconclusive diagnosis following newborn screening. J Cyst Fibros. 2015; 14(6): 706–713.
  3. Dunnen Jd, Dalgleish R, Maglott D, et al. HGVS Recommendations for the Description of Sequence Variants: 2016 Update. Human Mutation. 2016; 37(6): 564–569.
  4. Richards S, Aziz N, Bale S, et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17(5): 405–424.
  5. US CF Foundation J.H.U., The Hospital for Sick Children,. The Clinical and Func-tional TRanslation of CFTR (CFTR2). 2011. https://cftr2.org/ (19/8/2022).
  6. Claustres M, Thèze C, des Georges M, et al. CFTR-France, a national relational patient database for sharing genetic and phenotypic data associated with rare CFTR variants. Hum Mutat. 2017; 38(10): 1297–1315.
  7. Castellani C, Cuppens H, Macek M, et al. Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. Journal of Cystic Fibrosis. 2008; 7(3): 179–196.
  8. Sosnay PR, Siklosi KR, Van Goor F, et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat Genet. 2013; 45(10): 1160–1167.
  9. Bombieri C, Claustres M, Boeck KDe, et al. Recommendations for the classification of diseases as CFTR-related disorders. Journal of Cystic Fibrosis. 2011; 10: S86–S102.
  10. Dequeker E, Stuhrmann M, Morris MA, et al. Best practice guidelines for molecular genetic diagnosis of cystic fibrosis and CFTR-related disorders--updated European recommendations. Eur J Hum Genet. 2009; 17(1): 51–65.
  11. Highsmith WE, Burch LH, Zhou Z, et al. A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. N Engl J Med. 1994; 331(15): 974–980.
  12. Chillon Μ, Dork T, Casals T, et al. et al.. A novel do-nor splice site in intron 11 of the CFTR gene, created by mutation 1811+1.6kbA->G, pro-duces a new exon: high frequency in Spanish cystic fibrosis chromosomes and association with severe phenotype. Am J Hum Genet. 1995; 56: 623–629.
  13. Faà V, Incani F, Meloni A, et al. Characterization of a disease-associated mutation affecting a putative splicing regulatory element in intron 6b of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. J Biol Chem. 2009; 284(44): 30024–30031.
  14. Costantino L, Claut L, Paracchini V, et al. A novel donor splice site characterized by CFTR mRNA analysis induces a new pseudo-exon in CF patients. J Cyst Fibros. 2010; 9(6): 411–418.
  15. Bergougnoux A, Délétang K, Pommier A, et al. Functional characterization and phenotypic spectrum of three recurrent disease-causing deep intronic variants of the CFTR gene. J Cyst Fibros. 2019; 18(4): 468–475.
  16. Bonini J, Varilh J, Raynal C, et al. Small-scale high-throughput sequencing-based identification of new therapeutic tools in cystic fibrosis. Genet Med. 2015; 17(10): 796–806.
  17. Raraigh KS, Aksit MA, Hetrick K, et al. Complete CFTR gene sequencing in 5,058 individuals with cystic fibrosis informs variant-specific treatment. J Cyst Fibros. 2022; 21(3): 463–470.
  18. Costa C, Pruliere-Escabasse V, de Becdelievre A, et al. A recurrent deep-intronic splicing CF mutation emphasizes the importance of mRNA studies in clinical practice. J Cyst Fibros. 2011; 10(6): 479–482.
  19. Baatallah N, Bitam S, Martin N, et al. Cis variants identified in F508del complex alleles modulate CFTR channel rescue by small molecules. Hum Mutat. 2018; 39(4): 506–514.
  20. Sondo E, Cresta F, Pastorino C, et al. The L467F-F508del Complex Allele Hampers Pharmacological Rescue of Mutant CFTR by Elexacaftor/Tezacaftor/Ivacaftor in Cystic Fibrosis Patients: The Value of the Ex Vivo Nasal Epithelial Model to Address Non-Responders to CFTR-Modulating Drugs. Int J Mol Sci. 2022; 23(6).
  21. Bareil C, Bergougnoux A. CFTR gene variants, epidemiology and molecular pathology. Archives de Pédiatrie. 2020; 27: eS8–eS12.
  22. Veit G, Avramescu RG, Chiang AN, et al. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol Biol Cell. 2016; 27(3): 424–433.
  23. Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993; 73(7): 1251–1254.
  24. Foil KE, Powers A, Raraigh KS, et al. The increasing challenge of genetic counseling for cystic fibrosis. J Cyst Fibros. 2019; 18(2): 167–174.
  25. De Boeck K, Amaral MD. Progress in therapies for cystic fibrosis. Lancet Respir Med. 2016; 4(8): 662–674.
  26. Derichs N, Sanz J, Von Kanel T, et al. Intestinal current measurement for diagnostic classification of patients with questionable cystic fibrosis: validation and reference data. Thorax. 2010; 65(7): 594–599.
  27. Rowe SM, Clancy JP, Wilschanski M. Nasal potential difference measurements to assess CFTR ion channel activity. Methods Mol Biol. 2011; 741: 69–86.
  28. Boj S, Vonk A, Statia M, et al. Forskolin-induced Swelling in Intestinal Organoids: An In Vitro Assay for Assessing Drug Response in Cystic Fibrosis Patients. Journal of Visualized Experiments. 2017(120).
  29. Joynt AT, Evans TA, Pellicore MJ, et al. Evaluation of both exonic and intronic variants for effects on RNA splicing allows for accurate assessment of the effectiveness of precision therapies. PLoS Genet. 2020; 16(10): e1009100.
  30. Raraigh KS, Lewis MH, Collaco JM, et al. Caution advised in the use of CFTR modulator treatment for individuals harboring specific CFTR variants. J Cyst Fibros. 2022; 21(5): 856–860.
  31. Crawford KJ, Downey DG. Theratyping in cystic fibrosis. Curr Opin Pulm Med. 2018; 24(6): 612–617.
  32. Skilton M, Krishan A, Patel S, et al. Potentiators (specific therapies for class III and IV mutations) for cystic fibrosis. Cochrane Database Syst Rev. 2019; 1(1): CD009841.
  33. Southern KW, Murphy J, Sinha IP, et al. Corrector therapies (with or without potentiators) for people with cystic fibrosis with class II CFTR gene variants (most common-ly F508del). Cochrane Database Syst Rev. 2020; 12(0966): pub3.
  34. Middleton PG, Mall MA, Dřevínek P, et al. VX17-445-102 Study Group. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N Engl J Med. 2019; 381(19): 1809–1819.
  35. Heijerman HGM, McKone EF, Downey DG, et al. VX17-445-103 Trial Group. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet. 2019; 394(10212): 1940–1948.
  36. Nichols DP, Paynter AC, Heltshe SL, et al. PROMISE Study group. Clinical Effectiveness of Elexacaftor/Tezacaftor/Ivacaftor in People with Cystic Fibrosis: A Clinical Trial. Am J Respir Crit Care Med. 2022; 205(5): 529–539.
  37. Zemanick ET, Taylor-Cousar JL, Davies J, et al. A Phase 3 Open-Label Study of Elexacaftor/Tezacaftor/Ivacaftor in Children 6 through 11 Years of Age with Cystic Fibrosis and at Least One Allele. Am J Respir Crit Care Med. 2021; 203(12): 1522–1532.
  38. Barry PJ, Mall MA, Polineni D, et al. VX18-445-104 Study Group, VX18-445-104 Study Group. Triple Therapy for Cystic Fibrosis -Gating and -Residual Function Genotypes. N Engl J Med. 2021; 385(9): 815–825.
  39. Aslam A, Jahnke N, Remmington T, et al. Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis. Paediatr Respir Rev. 2017; 24: 32–34.
  40. Davies JC, Cunningham S, Harris WT, et al. KIWI Study Group. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2-5 years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study. Lancet Respir Med. 2016; 4(2): 107–115.
  41. Rosenfeld M, Wainwright CE, Higgins M, et al. ARRIVAL study group. Ivacaftor treatment of cystic fibrosis in children aged 12 to <24 months and with a CFTR gating mutation (ARRIVAL): a phase 3 single-arm study. Lancet Respir Med. 2018; 6(7): 545–553.
  42. Davies JC, Wainwright CE, Sawicki GS, et al. Ivacaftor in Infants Aged 4 to <12 Months with Cystic Fibrosis and a Gating Mutation. Results of a Two-Part Phase 3 Clinical Trial. Am J Respir Crit Care Med. 2021; 203(5): 585–593.
  43. Rosenfeld M, Cunningham S, Harris WT, et al. KLIMB study group. An open-label extension study of ivacaftor in children with CF and a CFTR gating mutation initiating treatment at age 2-5 years (KLIMB). J Cyst Fibros. 2019; 18(6): 838–843.
  44. Ratjen F, Klingel M, Black P, et al. Changes in Lung Clearance Index in Preschool-aged Patients with Cystic Fibrosis Treated with Ivacaftor (GOAL): A Clinical Trial. Am J Respir Crit Care Med. 2018; 198(4): 526–528.
  45. Davies G, Stanojevic S, Raywood E, et al. An observational study of the lung clearance index throughout childhood in cystic fibrosis: early years matter. European Respiratory Journal. 2020; 56(4): 2000006.
  46. Hardaker KM, Panda H, Hulme K, et al. Abnormal preschool Lung Clearance Index (LCI) reflects clinical status and predicts lower spirometry later in childhood in cystic fibrosis. J Cyst Fibros. 2019; 18(5): 721–727.
  47. McNamara JJ, McColley SA, Marigowda G, et al. Safety, pharmacokinetics, and pharmacodynamics of lumacaftor and ivacaftor combination therapy in children aged 2-5 years with cystic fibrosis homozygous for F508del-CFTR: an open-label phase 3 study. Lancet Respir Med. 2019; 7(4): 325–335.
  48. Hoppe JE, Chilvers M, Ratjen F, et al. Long-term safety of lumacaftor-ivacaftor in children aged 2-5 years with cystic fibrosis homozygous for the F508del-CFTR mutation: a multicentre, phase 3, open-label, extension study. Lancet Respir Med. 2021; 9(9): 977–988.
  49. European Medicines Agency. Orkambi Summary of Product Characteristics. 2015. https://www.ema.europa.eu/en/documents/product-information/ orkambi-epar-product-information_en.pdf (29/3/22).
  50. Ferkol TW. Prevention of cystic fibrosis: The beginning of the end? Sci Transl Med. 2019; 11(485).
  51. Sun X, Yi Y, Yan Z, et al. In utero and postnatal VX-770 administration rescues multiorgan disease in a ferret model of cystic fibrosis. Sci Transl Med. 2019; 11(485).
  52. NIH Cystic fibrosis agents. Livertox: clinical and research information on drug-induced liver injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kid-ney Diseases; 2012.
  53. Safirstein J, Grant J, Clausen E, et al. Biliary disease and cholecystectomy after initiation of elexacaftor/ivacaftor/tezacaftor in adults with cystic fibrosis. Journal of Cystic Fibrosis. 2021; 20(3): 506–510.
  54. Dagenais RVE, Su VCH, Quon BS. Real-World Safety of CFTR Modulators in the Treatment of Cystic Fibrosis: A Systematic Review. J Clin Med. 2020; 10(1).
  55. Valiyil R, Christopher-Stine L. Drug-related myopathies of which the clinician should be aware. Curr Rheumatol Rep. 2010; 12(3): 213–220.
  56. Davies JC, Sermet-Gaudelus I, Naehrlich L, et al. VX16-661-115 Investigator Group. A phase 3, double-blind, parallel-group study to evaluate the efficacy and safety of tezacaftor in combination with ivacaftor in participants 6 through 11 years of age with cystic fibrosis homozygous for F508del or heterozygous for the F508del-CFTR mutation and a residual function mutation. J Cyst Fibros. 2021; 20(1): 68–77.
  57. Sermet-Gaudelus I, Nguyen-Khoa T, Hatton A, et al. Sweat Chloride Testing and Nasal Potential Difference (NPD) Are Primary Outcome Parameters in Treatment with Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators. J Pers Med. 2021; 11(8).
  58. Birket SE, Chu KK, Houser GH, et al. Combination therapy with cystic fibrosis transmembrane conductance regulator modulators augment the airway functional microanatomy. Am J Physiol Lung Cell Mol Physiol. 2016; 310(10): L928–L939.
  59. Papworth Hospital NHS Foundation Trust. Kaftrio: turning around the lives of pa-tients with cystic fibrosis. 2020. https://royalpapworth.nhs.uk/our-hospital/ latest-news/kaftrio-patients-cystic-fibrosis-Alex-StobbsRoyal (29/3/22).
  60. DiMango E, Overdevest J, Keating C, et al. Effect of highly effective modulator treatment on sinonasal symptoms in cystic fibrosis. J Cyst Fibros. 2021; 20(3): 460–463.
  61. Sergeev V, Chou FY, Lam GY, et al. The Extrapulmonary Effects of Cystic Fibrosis Transmembrane Conductance Regulator Modulators in Cystic Fibrosis. Ann Am Thorac Soc. 2020; 17(2): 147–154.
  62. Moran A, Dunitz J, Nathan B, et al. Cystic fibrosis-related diabetes: current trends in prevalence, incidence, and mortality. Diabetes Care. 2009; 32(9): 1626–1631.
  63. Bell S, Mall M, Gutierrez H, et al. The future of cystic fibrosis care: a global perspective. The Lancet Respiratory Medicine. 2020; 8(1): 65–124.
  64. Christian F, Thierman A, Shirley E, et al. Sustained Glycemic Control With Ivacaftor in Cystic Fibrosis-Related Diabetes. J Investig Med High Impact Case Rep. 2019; 7: 2324709619842898.
  65. Tsabari R, Elyashar HI, Cymberknowh MC, et al. CFTR potentiator therapy ameliorates impaired insulin secretion in CF patients with a gating mutation. J Cyst Fibros. 2016; 15(3): e25–e27.
  66. Volkova N, Moy K, Evans J, et al. Disease progres-sion in patients with cystic fibrosis treated with ivacaftor: data from national US and UK registries. J Cyst Fibros 2020;19:68-79, doi:10. 1016/j jcf. 2019; 05: 015.
  67. Hayes D, McCoy KS, Sheikh SI. Resolution of cystic fibrosis-related diabetes with ivacaftor therapy. Am J Respir Crit Care Med. 2014; 190(5): 590–591.
  68. Thomassen JC, Mueller MI, Alejandre Alcazar MA, et al. Effect of Lumacaftor/Ivacaftor on glucose metabolism and insulin secretion in Phe508del homozygous cystic fibrosis patients. J Cyst Fibros. 2018; 17(2): 271–275.
  69. Flume PA, Liou TG, Borowitz DS, et al. VX 08-770-104 Study Group. Ivacaftor in subjects with cystic fibrosis who are homozygous for the F508del-CFTR mutation. Chest. 2012; 142(3): 718–724.
  70. Rehman A, Baloch NUA, Janahi IA, et al. Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. N Engl J Med. 2015; 373(18): 1783–1784.
  71. Li A, Vigers T, Pyle L, et al. Continuous glucose monitoring in youth with cystic fibrosis treated with lumacaftor-ivacaftor. J Cyst Fibros. 2019; 18(1): 144–149.
  72. Scully KJ, Marchetti P, Sawicki GS, et al. The effect of elexacaftor/tezacaftor/ivacaftor (ETI) on glycemia in adults with cystic fibrosis. J Cyst Fibros. 2022; 21(2): 258–263.
  73. Chan CL. Continuous glucose monitoring in cystic fibrosis-Benefits, limitations, and opportunities. J Cyst Fibros. 2021; 20(5): 725–726.
  74. Lanng S, Thorsteinsson B, Nerup J, et al. Influence of the development of diabetes mellitus on clinical status in patients with cystic fibrosis. Eur J Pediatr. 1992; 151(9): 684–687.
  75. Milla CE, Warwick WJ, Moran A. Trends in pulmonary function in patients with cystic fibrosis correlate with the degree of glucose intolerance at baseline. Am J Respir Crit Care Med. 2000; 162(3 Pt 1): 891–895.
  76. Moran A, Pillay K, Becker D, et al. ISPAD Clinical Practice Consensus Guidelines 2018: Management of cystic fibrosis-related diabetes in children and adolescents. Pediatr Diabetes. 2018; 19 Suppl 27: 64–74.
  77. Brodsky J, Dougherty S, Makani R, et al. Elevation of 1-hour plasma glucose during oral glucose tolerance testing is associated with worse pulmonary function in cystic fibrosis. Diabetes Care. 2011; 34(2): 292–295.
  78. Elidottir H, Diemer S, Eklund E, et al. Abnormal glucose tolerance and lung function in children with cystic fibrosis. Comparing oral glucose tolerance test and continuous glucose monitoring. J Cyst Fibros. 2021; 20(5): 779–784.
  79. Chan CL, Ode KL, Granados A, et al. Continuous glucose monitoring in cystic fibrosis - A practical guide. J Cyst Fibros. 2019; 18 Suppl 2: S25–S31.
  80. Chan CL, Vigers T, Pyle L, et al. Continuous glucose monitoring abnormalities in cystic fibrosis youth correlate with pulmonary function decline. J Cyst Fibros. 2018; 17(6): 783–790.
  81. Petersen MC, Begnel L, Wallendorf M, et al. Effect of elexacaftor-tezacaftor-ivacaftor on body weight and metabolic parameters in adults with cystic fibrosis. J Cyst Fibros. 2022; 21(2): 265–271.
  82. Bailey J, Rozga M, McDonald CM, et al. Effect of CFTR Modulators on Anthropometric Parameters in Individuals with Cystic Fibrosis: An Evidence Analysis Center Systematic Review. J Acad Nutr Diet. 2021; 121(7): 1364–1378.e2.
  83. Duckers J, Lesher B, Thorat T, et al. Real-World Outcomes of Ivacaftor Treatment in People with Cystic Fibrosis: A Systematic Review. J Clin Med. 2021; 10(7).
  84. Stallings VA, Sainath N, Oberle M, et al. Energy Balance and Mechanisms of Weight Gain with Ivacaftor Treatment of Cystic Fibrosis Gating Mutations. J Pediatr. 2018; 201: 229–237.e4.
  85. Gelfond D, Heltshe S, Ma C, et al. Impact of CFTR Modulation on Intestinal pH, Motility, and Clinical Outcomes in Patients With Cystic Fibrosis and the G551D Mutation. Clin Transl Gastroenterol. 2017; 8(3): e81.
  86. Burgel PR, Munck A, Durieu I, et al. Real-life safety and effectiveness of Lumacaftor-ivacaftor in patients with cystic fibrosis. Am J Respir Crit Care Med 2020;201:188-97. Am J Respir Crit Care Med. 2020; 201: 188–197.
  87. Sommerburg O, Hämmerling S, Schneider SP, et al. CFTR Modulator Therapy with Lumacaftor/Ivacaftor Alters Plasma Concentrations of Lipid-Soluble Vitamins A and E in Patients with Cystic Fibrosis. Antioxidants (Basel). 2021; 10(3).
  88. Martin C, Burnet E, Ronayette-Preira A, et al. Patient perspectives following initiation of elexacaftor-tezacaftor-ivacaftor in people with cystic fibrosis and advanced lung disease. Respir Med Res. 2021; 80: 100829.
  89. Cystic Fibrosis Trust. Emotional and social impact of Kaftrio. 2020. https://www.cysticfibrosis.org.uk/sites/default/files/2020-12/Emotional% 20and%20social%20impact%20of%20Kaftrio%20Nov%202020.pdf (28/02/22).
  90. Talwalkar JS, Koff JL, Lee HB, et al. Cystic Fibrosis Transmembrane Regulator Modulators: Implications for the Management of Depression and Anxiety in Cystic Fibrosis. Psychosomatics. 2017; 58(4): 343–354.
  91. Tindell W, Su A, Oros SM, et al. Trikafta and Psychopathology in Cystic Fibrosis: A Case Report. Psychosomatics. 2020; 61(6): 735–738.
  92. McKinzie CJ, Goralski JL, Noah TL, et al. Worsening anxiety and depression after initiation of lumacaftor/ivacaftor combination therapy in adolescent females with cystic fibrosis. J Cyst Fibros. 2017; 16(4): 525–527.
  93. Heo S, Young DC, Safirstein J, et al. Mental status changes during elexacaftor/tezacaftor/ivacaftor therapy. J Cyst Fibros. 2022; 21(2): 339–343.
  94. Quittner AL, Goldbeck L, Abbott J, et al. Prevalence of depression and anxiety in patients with cystic fibrosis and parent caregivers: results of The International Depression Epidemiological Study across nine countries. Thorax. 2014; 69(12): 1090–1097.
  95. Ploessl C, Pettit RS, Donaldson J. Prevalence of depression and antidepressant therapy use in a pediatric cystic fibrosis population. Ann Pharmacother. 2014; 48(4): 488–493.
  96. Smith BA, Modi AC, Quittner AL, et al. Depressive symptoms in children with cystic fibrosis and parents and its effects on adherence to airway clearance. Pediatr Pulmonol. 2010; 45(8): 756–763.
  97. Verkleij M, de Winter D, Hurley MA, et al. Implementing the International Committee on Mental Health in Cystic Fibrosis (ICMH) guidelines: Screening accuracy and referral-treatment pathways. J Cyst Fibros. 2018; 17(6): 821–827.
  98. Quittner AL, Abbott J, Georgiopoulos AM, et al. International Committee on Mental Health, EPOS Trial Study Group. International Committee on Mental Health in Cystic Fibrosis: Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus statements for screening and treating depression and anxiety. Thorax. 2016; 71(1): 26–34.
  99. Snell C, Fernandes S, Bujoreanu IS, et al. Depression, illness severity, and healthcare utilization in cystic fibrosis. Pediatr Pulmonol. 2014; 49(12): 1177–1181.
  100. Schechter MS, Ostrenga JS, Fink AK, et al. Decreased survival in cystic fibrosis patients with a positive screen for depression. J Cyst Fibros. 2021; 20(1): 120–126.
  101. Olivereau L, Nave V, Garcia S, et al. Adherence to lumacaftor-ivacaftor therapy in patients with cystic fibrosis in France. J Cyst Fibros. 2020; 19(3): 402–406.
  102. Shteinberg M, Lulu AB, Downey DG, et al. Failure to conceive in women with CF is associated with pancreatic insufficiency and advancing age. J Cyst Fibros. 2019; 18(4): 525–529.
  103. Shteinberg M, Taylor-Cousar J, Durieu I, et al. Fertility and Pregnancy in Cystic Fibrosis. Chest. 2021; 160(6): 2051–2060.
  104. Esan OB, Schlüter DK, Phillips R, et al. Pregnancy rates and outcomes in women with cystic fibrosis in the UK: comparisons with the general population before and after the introduction of disease-modifying treatment, 2003-17. BJOG. 2022; 129(5): 743–751.
  105. O'Connor KE, Goodwin DL, NeSmith A, et al. Elexacafator/tezacaftor/ivacaftor resolves subfertility in females with CF: A two center case series. J Cyst Fibros. 2021; 20(3): 399–401.
  106. Kendle AM, Roekner JT, Santillana EC, et al. Cystic Fibrosis Transmembrane Conductance Regulator Modulators During Pregnancy: A Case Series. Cureus. 2021; 13(8): e17427.
  107. Cystic Fibrosis Foundation. Clinical Considerations: fertility and CFTR Modulators. 2022. https://www.ecfs.eu/sites/default/files/Clinical%20Considerations% 20Fertility%20and%20Modulators.04122022.pdf (9/05/22).
  108. Kazmerski TM, Sawicki GS, Miller E, et al. Sexual and reproductive health behaviors and experiences reported by young women with cystic fibrosis. J Cyst Fibros. 2018; 17(1): 57–63.
  109. Godfrey EM, Mody S, Schwartz MR, et al. Contraceptive use among women with cystic fibrosis: A pilot study linking reproductive health questions to the Cystic Fibrosis Foundation National Patient Registry. Contraception. 2020; 101(6): 420–426.
  110. Gaillard DA, Carré-Pigeon F, Lallemand A. Normal vas deferens in fetuses with cystic fibrosis. J Urol. 1997; 158(4): 1549–1552.
  111. Trimble AT, Donaldson SH. Ivacaftor withdrawal syndrome in cystic fibrosis patients with the G551D mutation. J Cyst Fibros. 2018; 17: el3–ee6.
  112. Nash EF, Middleton PG, Taylor-Cousar JL. Outcomes of pregnancy in women with cystic fibrosis (CF) taking CFTR modulators - an international survey. J Cyst Fibros. 2020; 19(4): 521–526.
  113. Taylor-Cousar JL, Jain R. Maternal and fetal outcomes following elexacaftor-tezacaftor-ivacaftor use during pregnancy and lactation. J Cyst Fibros. 2021; 20(3): 402–406.
  114. European Medicines Agency. Kaftrio Summary of Product Characteristics. 2020. https://www.ema.europa.eu/en/medicines/human/EPAR/kaftrio (1/07/21).
  115. Trimble A, McKinzie C, Terrell M, et al. Measured fetal and neonatal exposure to Lumacaftor and Ivacaftor during pregnancy and while breastfeeding. J Cyst Fibros. 2018; 17(6): 779–782.
  116. Kerem E, Konstan MW, De Boeck K, et al. Cystic Fibrosis Ataluren Study Group. Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir Med. 2014; 2(7): 539–547.
  117. Guo J, Garratt A, Hill A. Worldwide rates of diagnosis and effective treatment for cystic fibrosis. J Cyst Fibros. 2022; 21(3): 456–462.
  118. McGarry ME, McColley SA. Cystic fibrosis patients of minority race and ethnicity less likely eligible for CFTR modulators based on CFTR genotype. Pediatr Pulmonol. 2021; 56(6): 1496–1503.
  119. De Boeck K, Zolin A, Cuppens H, et al. The relative frequency of CFTR mutation classes in European patients with cystic fibrosis. J Cyst Fibros. 2014; 13(4): 403–409.
  120. Silva IAL, Railean V, Duarte A, et al. Personalized Medicine Based on Nasal Epithelial Cells: Comparative Studies with Rectal Biopsies and Intestinal Organoids. J Pers Med. 2021; 11(5).
  121. Berkers G, van Mourik P, Vonk AM, et al. Rectal Organoids Enable Personalized Treatment of Cystic Fibrosis. Cell Rep. 2019; 26(7): 1701–1708.e3.
  122. Ramalho AS, Furstova E, Vonk AM, et al. Correction of CFTR function in intestinal organoids to guide treatment of cystic fibrosis. Eur Respir J. 2021; 57: 1902426.
  123. Dekkers JF, Berkers G, Kruisselbrink E, et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci Transl Med. 2016; 8(344): 344ra84.
  124. Muilwijk D, Bierlaagh M, van Mourik P, et al. Prediction of Real-World Long-Term Outcomes of People with CF Homozygous for the F508del Mutation Treated with CFTR Modulators. J Pers Med. 2021; 11(12).
  125. Anderson JD, Liu Z, Odom LV, et al. CFTR function and clinical response to modulators parallel nasal epithelial organoid swelling. Am J Physiol Lung Cell Mol Physiol. 2021; 321(1): L119–L129.
  126. Sette G, Lo Cicero S, Blaconà G, et al. Theratyping cystic fibrosis in ALI culture and organoid models generated from patient-derived nasal epithelial conditionally reprogrammed stem cells. Eur Respir J. 2021; 58(6).
  127. Magaret AS, Mayer-Hamblett N, VanDevanter D. Expanding access to CFTR modulators for rare mutations: The utility of n-of-1 trials. J Cyst Fibros. 2020; 19(1): 1–2.
  128. Mahadeva R, Webb K, Westerbeek RC, et al. Clinical outcome in relation to care in centres specialising in cystic fibrosis: cross sectional study. BMJ. 1998; 316(7147): 1771–1775.
  129. Ramos KJ, Guimbellot JS, Valapour M, et al. CFLTC Study Group. Use of elexacaftor/tezacaftor/ivacaftor among cystic fibrosis lung transplant recipients. J Cyst Fibros. 2022; 21(5): 745–752.
  130. Verleden GM, Glanville AR, Lease ED, et al. Chronic lung allograft dysfunction: Definition, diagnostic criteria, and approaches to treatment-A consensus report from the Pulmonary Council of the ISHLT. J Heart Lung Transplant. 2019; 38(5): 493–503.
  131. Vital D, Hofer M, Benden C, et al. Impact of sinus surgery on pseudomonal airway colonization, bronchiolitis obliterans syndrome and survival in cystic fibrosis lung transplant recipients. Respiration. 2013; 86(1): 25–31.
  132. Fernandez R, Safaeinili N, Kurihara C, et al. Association of body mass index with lung transplantation survival in the United States following implementation of the lung allocation score. J Thorac Cardiovasc Surg. 2018; 155(4): 1871–1879.
  133. Benhalima K, Standl E, Mathieu C. The importance of glycemic control: how low should we go with HbA1c? Start early, go safe, go low. J Diabetes Complications. 2011; 25(3): 202–207.
  134. Rowbotham NJ, Smith S, Leighton PA, et al. The top 10 research priorities in cystic fibrosis developed by a partnership between people with CF and healthcare providers. Thorax. 2018; 73(4): 388–390.
  135. Gilljam M, Chaparro C, Tullis E, et al. GI complications after lung transplantation in patients with cystic fibrosis. Chest. 2003; 123(1): 37–41.
  136. Fajac I, Daines C, Durieu I, et al. Non-respiratory health-related quality of life in people with cystic fibrosis receiving elexacaftor/tezacaftor/ivacaftor. Journal of Cystic Fibrosis. 2023; 22(1): 119–123.
  137. Barben J, Castellani C, Munck A, et al. European CF Society Neonatal Screening Working Group (ECFS NSWG). Updated guidance on the management of children with cystic fibrosis transmembrane conductance regulator-related metabolic syndrome/cystic fibrosis screen positive, inconclusive diagnosis (CRMS/CFSPID). J Cyst Fibros. 2021; 20(5): 810–819.
  138. Guo J, Wang J, Zhang J, et al. Current prices versus minimum costs of production for CFTR modulators. J Cyst Fibros. 2022; 21(5): 866–872.
  139. Zampoli M, Kashirskaya N, Karadag B, et al. Global access to affordable CFTR modulator drugs: Time for action! J Cyst Fibros. 2022; 21(3): e215–e216.