Wang Koch-adjusted axial length in SRK/T formula for ocular biometry in high myopia: a prospective study
Abstract
Background: The aim of this study was to prospectively assess refractive results of cataract surgery in highly myopic eyes using the SRKT formula and Wang Koch-adjusted axial length.
Material and methods: Prospectively, we recruited consecutive candidates for cataract surgery having an axial length equal to 27 mm and longer. We performed biometry by using Wang and Koch-adjusted axial length applied to the SRKT formula. The main outcome measures were: mean of refractive error, mean of absolute refractive error, and percentage of eyes that achieved a refractive error of ± 0.5D and ± 1D.
Results: Fifteen eyes of nine patients were involved in the study. The mean refractive error was -0.01D ± 0.4D, and the mean absolute refractive error was + 0.35D ± 0.20D. Refractive errors of ± 0.5D and ± 1D were achieved, respectively, in 86.6% and in 100% of eyes.
Conclusions: Wang Koch’s axial length adjustment applied to the SRKT formula is a reliable alternative in high myopic cataract patients.
Keywords: cataracthigh myopiaWang Koch adjustmentSRK/T formularefractive errorabsolute refractive error
References
- Zuberbuhler B, Seyedian M, Tuft S. Phacoemulsification in eyes with extreme axial myopia. J Cataract Refract Surg. 2009; 35(2): 335–340.
- Hayashi K, Hayashi H. Optimum target refraction for highly and moderately myopic patients after monofocal intraocular lens implantation. J Cataract Refract Surg. 2007; 33(2): 240–246.
- Hoffer KJ, Aramberri J, Haigis W, et al. Protocols for studies of intraocular lens formula accuracy. Am J Ophthalmol. 2015; 160(3): 403–405.e1.
- Wang Li, Shirayama M, Ma XJ, et al. Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm. J Cataract Refract Surg. 2011; 37(11): 2018–2027.
- Wang Li, Koch DD. Modified axial length adjustment formulas in long eyes. J Cataract Refract Surg. 2018; 44(11): 1396–1397.
- Yokoi T, Moriyama M, Hayashi K, et al. Evaluation of refractive error after cataract surgery in highly myopic eyes. Int Ophthalmol. 2013; 33(4): 343–348.
- Behndig A, Montan P, Stenevi U, et al. Aiming for emmetropia after cataract surgery: Swedish National Cataract Register study. J Cataract Refract Surg. 2012; 38(7): 1181–1186.
- Wang Q, Jiang Wu, Lin T, et al. Accuracy of intraocular lens power calculation formulas in long eyes: a systematic review and meta-analysis. Clin Exp Ophthalmol. 2018; 46(7): 738–749.
- Melles RB, Holladay JT, Chang WJ. Accuracy of Intraocular Lens Calculation Formulas. Ophthalmology. 2018; 125(2): 169–178.
- Liu J, Wang Li, Chai F, et al. Comparison of intraocular lens power calculation formulas in Chinese eyes with axial myopia. J Cataract Refract Surg. 2019; 45(6): 725–731.
- Zhou D, Sun Z, Deng G. Accuracy of the refractive prediction determined by intraocular lens power calculation formulas in high myopia. Indian J Ophthalmol. 2019; 67(4): 484–489.
- Zaldivar R, Shultz MC, Davidorf JM, et al. Intraocular lens power calculations in patients with extreme myopia. J Cataract Refract Surg. 2000; 26(5): 668–674.
- Abulafia A, Barrett GD, Rotenberg M, et al. Intraocular lens power calculation for eyes with an axial length greater than 26.0 mm: comparison of formulas and methods. J Cataract Refract Surg. 2015; 41(3): 548–556.