Vol 12, No 3 (2016)
Guidelines / Expert consensus
Published online: 2016-08-31

open access

Page views 570
Article views/downloads 2333
Get Citation

Connect on Social Media

Connect on Social Media

Liposomal doxorubicin in patients with breast cancer and concomitant cardiovascular diseases — an interdisciplinary expert opinion

Sebastian Szmit, Krzysztof J. Filipiak, Maria Litwiniuk, Grzegorz Opolski, Piotr Wysocki, Beata Zaborska, Maciej Krzakowski
Oncol Clin Pract 2016;12(3):92-96.

Abstract

The use of liposomal doxorubicin in place of conventional form can significantly reduce the risk of clinically important cardiovascular complications of chemotherapy. The use of liposomal doxorubicin-containing regimen seems to be the most justified in treatment of breast cancer patients with coexisting cardiovascular diseases. The document defines the possible clinical scenarios for the use of chemotherapy with liposomal doxorubicin and presents the optimal cardiac monitoring of this therapy.

References

  1. Peto R, Davies C, Godwin J, et al. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet. 2012; 379(9814): 432–444.
  2. Opolski G, Krzakowski M, Szmit S, et al. Task Force of National Consultants in Cardiology and Clinical Oncology. [Recommendations of National Team of Cardiologic and Oncologic Supervision on cardiologic safety of patients with breast cancer. The prevention and treatment of cardiovascular complications in breast cancer. The Task Force of National Consultants in Cardiology and Clinical Oncology for the elaboration of recommendations of cardiologic proceeding with patients with breast cancer]. Kardiol Pol. 2011; 69(5): 520–530.
  3. Szmit S, Jurczak W, Zaucha JM, et al. Pre-existing arterial hypertension as a risk factor for early left ventricular systolic dysfunction following (R)-CHOP chemotherapy in patients with lymphoma. J Am Soc Hypertens. 2014; 8(11): 791–799.
  4. Wang SY, Long JB, Hurria A, et al. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol. 2012; 60(24): 2504–2512.
  5. Bowles EJ, Wellman R, Feigelson HS, et al. Pharmacovigilance Study Team. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. J Natl Cancer Inst. 2012; 104(17): 1293–1305.
  6. Tarantini L, Cioffi G, Gori S, et al. Italian Cardio-Oncologic Network. Trastuzumab adjuvant chemotherapy and cardiotoxicity in real-world women with breast cancer. J Card Fail. 2012; 18(2): 113–119.
  7. Szmit S, Streb J, Starzec W, et al. Left ventricular systolic dysfunction in metastatic breast cancer patients: a Polish multicenter registry. Anticancer Res. 2015; 35(2): 989–995.
  8. Pal SK, Childs BH, Pegram M. Emergence of nonanthracycline regimens in the adjuvant treatment of breast cancer. Breast Cancer Res Treat. 2010; 119(1): 25–32.
  9. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. The Lancet. 2005; 365(9472): 1687–1717.
  10. Ryberg M, Nielsen D, Cortese G, et al. New insight into epirubicin cardiac toxicity: competing risks analysis of 1097 breast cancer patients. J Natl Cancer Inst. 2008; 100(15): 1058–1067.
  11. Chen WW, Chang DY, Huang SM, et al. The first two lines of chemotherapy for anthracycline-naive metastatic breast cancer: a comparative study of the efficacy of anthracyclines and non-anthracyclines. Breast. 2013; 22(6): 1148–1154.
  12. Rahman ZU, Frye DK, Smith TL, et al. Results and long term follow-up for 1581 patients with metastatic breast carcinoma treated with standard dose doxorubicin-containing chemotherapy: a reference. Cancer. 1999; 85(1): 104–111.
  13. Greenberg PA, Hortobagyi GN, Smith TL, et al. Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J Clin Oncol. 1996; 14(8): 2197–2205.
  14. Pierga JY, Asselain B, Jouve M, et al. Effect of adjuvant chemotherapy on outcome in patients with metastatic breast carcinoma treated with first-line doxorubicin-containing chemotherapy. Cancer. 2001; 91(6): 1079–1089.
  15. Kanter PM, Bullard GA, Ginsberg RA, et al. Comparison of the cardiotoxic effects of liposomal doxorubicin (TLC D-99) versus free doxorubicin in beagle dogs. In Vivo. 1993; 7(1): 17–26.
  16. Theodoulou M, Hudis C. Cardiac profiles of liposomal anthracyclines: greater cardiac safety versus conventional doxorubicin? Cancer. 2004; 100(10): 2052–2063.
  17. Ewer MS, Martin FJ, Henderson C, et al. Cardiac safety of liposomal anthracyclines. Semin Oncol. 2004; 31(6 Suppl 13): 161–181.
  18. Mayer LD, Tai LC, Bally MB, et al. Characterization of liposomal systems containing doxorubicin entrapped in response to pH gradients. Biochim Biophys Acta. 1990; 1025(2): 143–151.
  19. Marty M. Liposomal doxorubicin (Myocet™) and conventional anthracyclines: a comparison. The Breast. 2001; 10 Suppl 2: 28–33.
  20. Tardi PG, Boman NL, Cullis PR. Liposomal doxorubicin. J Drug Target. 1996; 4(3): 129–140.
  21. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998; 58(7): 1408–1416.
  22. Batist G, Ramakrishnan G, Rao CS, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol. 2001; 19(5): 1444–1454.
  23. Batist G, Harris L, Azarnia N, et al. Improved anti-tumor response rate with decreased cardiotoxicity of non-pegylated liposomal doxorubicin compared with conventional doxorubicin in first-line treatment of metastatic breast cancer in patients who had received prior adjuvant doxorubicin: results of a retrospective analysis. Anticancer Drugs. 2006; 17(5): 587–595.
  24. Szmit S, Jędrzejczak WW, Opolski G. Consensus statement on indications for the use of non-pegylated liposomal doxorubicin in patients with lymphomas and concomitant cardiovascular diseases. OncoReview. 2013; 3: 213–215.
  25. Hamo CE, Bloom MW, Cardinale D, et al. Cancer Therapy-Related Cardiac Dysfunction and Heart Failure: Part 2: Prevention, Treatment, Guidelines, and Future Directions. Circ Heart Fail. 2016; 9(2): e002843.
  26. Zuppinger C, Timolati F, Suter TM. Pathophysiology and diagnosis of cancer drug induced cardiomyopathy. Cardiovasc Toxicol. 2007; 7(2): 61–66.
  27. Floyd JD, Nguyen DT, Lobins RL, et al. Cardiotoxicity of cancer therapy. J Clin Oncol. 2005; 23(30): 7685–7696.
  28. Załącznik B.9. http://www.mz.gov.pl/leki/refundacja/programy-lekowe/.
  29. Plana JC, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014; 15(10): 1063–1093.
  30. Snipelisky D, Park JY, Lerman A, et al. Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clin Proc. 2014; 89(9): 1287–1306.
  31. Piotrowski G, Gawor R, Gawor Z, et al. Współczesna rola echokardiografii w monitorowaniu kardiotoksyczności leków przeciwnowotworowych. Stanowisko grupy ekspertów polskiego Klinicznego Forum Obrazowania Serca i Naczyń. Kardiologia Polska. 2014; 72(6): 558–575.
  32. Mousavi N, Tan TC, Ali M, et al. Echocardiographic parameters of left ventricular size and function as predictors of symptomatic heart failure in patients with a left ventricular ejection fraction of 50-59% treated with anthracyclines. Eur Heart J Cardiovasc Imaging. 2015; 16(9): 977–984.
  33. Thavendiranathan P, Poulin F, Lim KD, et al. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014; 63(25 Pt A): 2751–2768.
  34. Stachowiak P, Kornacewicz-Jach Z, Safranow K. Prognostic role of troponin and natriuretic peptides as biomarkers for deterioration of left ventricular ejection fraction after chemotherapy. Arch Med Sci. 2014; 10(5): 1007–1018.
  35. Ammon M, Arenja N, Leibundgut G, et al. Cardiovascular management of cancer patients with chemotherapy-associated left ventricular systolic dysfunction in real-world clinical practice. J Card Fail. 2013; 19(9): 629–634.
  36. Bosch X, Rovira M, Sitges M, et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol. 2013; 61(23): 2355–2362.
  37. Cardinale D, Colombo A, Lamantia G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010; 55(3): 213–220.
  38. Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015; 131(22): 1981–1988.
  39. Gulati G, Heck SL, Ree AH, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016; 37(21): 1671–1680.