Online first
Review paper
Published online: 2024-07-23

open access

Page views 30
Article views/downloads 17
Get Citation

Connect on Social Media

Connect on Social Media

PIK3CA and PIK3R1 mutations in cancer: from the mechanism of activation to PI3K targeted therapies

Iwona K. Rzepecka1, Andrzej Tysarowski2

Abstract

PIK3CA and PIK3R1, the genes that encode catalytic (p110α) and regulatory (p85α) subunits of PI3Kα kinase are frequently mutated in cancer patients, resulting in aberrant hyperactivation of the PI3K pathway. Due to its high clinical relevance, mutated PI3K proteins are attractive targets for anti-cancer therapy. To date, some PI3K inhibitors have displayed significant therapeutic effects. One of them, alpelisib, has been approved for the treatment of ER-positive, HER2-negative, and PIK3CA-mutated advanced or metastatic breast cancer. Below, we describe how PIK3CA and PIK3R1 mutants influence PI3K activity. We also review the frequency of PIK3CA and PIK3R1 mutations in cancers, diversity of these mutations, and PI3K therapeutic strategies.

Article available in PDF format

View PDF Download PDF file

References

  1. Whitman M, Downes CP, Keeler M, et al. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature. 1988; 332(6165): 644–646.
  2. Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013; 502(7471): 333–339.
  3. Glaviano A, Foo ASC, Lam HY, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 2023; 22(1): 138.
  4. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015; 15(1): 7–24.
  5. Fruman DA, Chiu H, Hopkins BD, et al. The PI3K Pathway in Human Disease. Cell. 2017; 170(4): 605–635.
  6. Lučić I, Rathinaswamy MK, Truebestein L, et al. Conformational sampling of membranes by Akt controls its activation and inactivation. Proc Natl Acad Sci U S A. 2018; 115(17): E3940–E3949.
  7. Manning BD, Toker A. AKT/PKB Signaling: Navigating the Network. Cell. 2017; 169(3): 381–405.
  8. Madsen RR. PI3K in stemness regulation: from development to cancer. Biochem Soc Trans. 2020; 48(1): 301–315.
  9. Nussinov R, Zhang M, Tsai CJ, et al. Phosphorylation and Driver Mutations in PI3Kα and PTEN Autoinhibition. Mol Cancer Res. 2021; 19(4): 543–548.
  10. Gabelli SB, Echeverria I, Alexander M, et al. Activation of PI3Kα by physiological effectors and by oncogenic mutations: structural and dynamic effects. Biophys Rev. 2014; 6(1): 89–95.
  11. Burke JE, Perisic O, Masson GR, et al. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc Natl Acad Sci U S A. 2012; 109(38): 15259–15264.
  12. Liu S, Knapp S, Ahmed AA. The structural basis of PI3K cancer mutations: from mechanism to therapy. Cancer Res. 2014; 74(3): 641–646.
  13. Zhang M, Jang H, Nussinov R. PI3K inhibitors: review and new strategies. Chem Sci. 2020; 11(23): 5855–5865.
  14. Burke JE, Perisic O, Williams RL. Allosteric activation of PI3Kα by oncogenic mutations. Oncotarget. 2013; 4(2): 180–181.
  15. Thorpe LM, Spangle JM, Ohlson CE, et al. PI3K-p110α mediates the oncogenic activity induced by loss of the novel tumor suppressor PI3K-p85α. Proc Natl Acad Sci U S A. 2017; 114(27): 7095–7100.
  16. Vallejo-Díaz J, Chagoyen M, Olazabal-Morán M, et al. The Opposing Roles of PIK3R1/p85α and PIK3R2/p85β in Cancer. Trends Cancer. 2019; 5(4): 233–244.
  17. Burke JE, Williams RL. Synergy in activating class I PI3Ks. Trends Biochem Sci. 2015; 40(2): 88–100.
  18. Dornan GL, Burke JE. Molecular Mechanisms of Human Disease Mediated by Oncogenic and Primary Immunodeficiency Mutations in Class IA Phosphoinositide 3-Kinases. Front Immunol. 2018; 9: 575.
  19. Fox M, Mott HR, Owen D. Class IA PI3K regulatory subunits: p110-independent roles and structures. Biochem Soc Trans. 2020; 48(4): 1397–1417.
  20. Cheung LWT, Hennessy BT, Li J, et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 2011; 1(2): 170–185.
  21. Cheung LWt, Mills GB. Targeting therapeutic liabilities engendered by PIK3R1 mutations for cancer treatment. Pharmacogenomics. 2016; 17(3): 297–307.
  22. Rudd ML, Price JC, Fogoros S, et al. A unique spectrum of somatic PIK3CA (p110alpha) mutations within primary endometrial carcinomas. Clin Cancer Res. 2011; 17(6): 1331–1340.
  23. Konopka B, Janiec-Jankowska A, Kwiatkowska E, et al. PIK3CA mutations and amplification in endometrioid endometrial carcinomas: relation to other genetic defects and clinicopathologic status of the tumors. Hum Pathol. 2011; 42(11): 1710–1719.
  24. Urick ME, Rudd ML, Godwin AK, et al. PIK3R1 (p85α) is somatically mutated at high frequency in primary endometrial cancer. Cancer Res. 2011; 71(12): 4061–4067.
  25. Zardavas D, Te Marvelde L, Milne RL, et al. Tumor PIK3CA Genotype and Prognosis in Early-Stage Breast Cancer: A Pooled Analysis of Individual Patient Data. J Clin Oncol. 2018; 36(10): 981–990.
  26. Rodgers SJ, Mitchell CA, Ooms LM. The mechanisms of class 1A PI3K and Wnt/β-catenin coupled signaling in breast cancer. Biochem Soc Trans. 2023; 51(4): 1459–1472.
  27. Cizkova M, Vacher S, Meseure D, et al. PIK3R1 underexpression is an independent prognostic marker in breast cancer. BMC Cancer. 2013; 13: 545.
  28. Cai Yi, Yousef A, Grandis JR, et al. NSAID therapy for PIK3CA-Altered colorectal, breast, and head and neck cancer. Adv Biol Regul. 2020; 75: 100653.
  29. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015; 517(7536): 576–582.
  30. Suda T, Hama T, Kondo S, et al. Copy number amplification of the PIK3CA gene is associated with poor prognosis in non-lymph node metastatic head and neck squamous cell carcinoma. BMC Cancer. 2012; 12: 416.
  31. Voutsadakis IA. KRAS mutated colorectal cancers with or without PIK3CA mutations: Clinical and molecular profiles inform current and future therapeutics. Crit Rev Oncol Hematol. 2023; 186: 103987.
  32. Jin J, Shi Y, Zhang S, et al. mutation and clinicopathological features of colorectal cancer: a systematic review and Meta-Analysis. Acta Oncol. 2020; 59(1): 66–74.
  33. Tan ES, Fan W, Knepper TC, et al. Prognostic and Predictive Value of PIK3CA Mutations in Metastatic Colorectal Cancer. Target Oncol. 2022; 17(4): 483–492.
  34. Jaiswal BS, Janakiraman V, Kljavin NM, et al. Somatic mutations in p85alpha promote tumorigenesis through class IA PI3K activation. Cancer Cell. 2009; 16(6): 463–474.
  35. López-Knowles E, Hernández S, Malats N, et al. PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res. 2006; 66(15): 7401–7404.
  36. Yamamoto H, Shigematsu H, Nomura M, et al. PIK3CA mutations and copy number gains in human lung cancers. Cancer Res. 2008; 68(17): 6913–6921.
  37. Jing C, Mao X, Wang Z, et al. Next‑generation sequencing‑based detection of EGFR, KRAS, BRAF, NRAS, PIK3CA, Her‑2 and TP53 mutations in patients with non‑small cell lung cancer. Mol Med Rep. 2018; 18(2): 2191–2197.
  38. Zhao J, Han Y, Li J, et al. Prognostic value of in non-small cell lung cancer. Oncol Lett. 2019; 17(3): 3233–3240.
  39. Brennan CW, Verhaak RGW, McKenna A, et al. TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell. 2013; 155(2): 462–477.
  40. Tanaka S, Batchelor TT, Iafrate AJ, et al. PIK3CA activating mutations are associated with more disseminated disease at presentation and earlier recurrence in glioblastoma. Acta Neuropathol Commun. 2019; 7(1): 66.
  41. Yu M, Chen J, Xu Z, et al. Development and safety of PI3K inhibitors in cancer. Arch Toxicol. 2023; 97(3): 635–650.
  42. Markham A. Copanlisib: First Global Approval. Drugs. 2017; 77(18): 2057–2062.
  43. Meng D, He W, Zhang Y, et al. Development of PI3K inhibitors: Advances in clinical trials and new strategies (Review). Pharmacol Res. 2021; 173: 105900.
  44. Markham A. Alpelisib: First Global Approval. Drugs. 2019; 79(11): 1249–1253.
  45. André F, Ciruelos E, Rubovszky G, et al. SOLAR-1 Study Group. Alpelisib for -Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N Engl J Med. 2019; 380(20): 1929–1940.
  46. Blair HA. Duvelisib: First Global Approval. Drugs. 2018; 78(17): 1847–1853.
  47. Shah A, Mangaonkar A. Idelalisib: A Novel PI3Kδ Inhibitor for Chronic Lymphocytic Leukemia. Ann Pharmacother. 2015; 49(10): 1162–1170.
  48. Miller BW, Przepiorka D, de Claro RA, et al. FDA approval: idelalisib monotherapy for the treatment of patients with follicular lymphoma and small lymphocytic lymphoma. Clin Cancer Res. 2015; 21(7): 1525–1529.