Vol 72, No 1 (2022)
Review paper
Published online: 2022-02-09

open access

Page views 5277
Article views/downloads 247
Get Citation

Connect on Social Media

Connect on Social Media

Phacomatoses, genetic testing for personalisation of clinical management (part 2)

Anna Kofla-Dłubacz1, Andrzej Stawarski1, Tomasz Pytrus1, Justyna Gil2
Nowotwory. Journal of Oncology 2022;72(1):58-64.

Abstract

Von Hippel-Lindau disease and tuberous sclerosis are rare genetic disorders, which belong to the group of phacomatoses. They involve an increased risk of development of multiple cancers, mostly benign ones, which may undergo malignant transformation. Genetic diagnostic including identification of the pathogenic variant of the VHL and TSC1 and TSC2 genes enables optimisation of patient care and identification of relatives who carry the mutation.

Article available in PDF format

View PDF Download PDF file

References

  1. Chittiboina P, Lonser RR. Von Hippel-Lindau disease. Handb Clin Neurol. 2015; 132: 139–156.
  2. Ning XH, Zhang N, Li T, et al. Telomere shortening is associated with genetic anticipation in Chinese Von Hippel-Lindau disease families. Cancer Res. 2014; 74(14): 3802–3809.
  3. Wilding A, Ingham SL, Lalloo F, et al. Life expectancy in hereditary cancer predisposing diseases: an observational study. J Med Genet. 2012; 49(4): 264–269.
  4. Neumann H, Wiestler OD. Clustering of features of von Hippel-Lindau syndrome: evidence for a complex genetic locus. Lancet. 1991; 337(8749): 1052–1054.
  5. Manski TJ. Endolymphatic sac tumors. A source of morbid hearing loss in von Hippel-Lindau disease. JAMA. 1997; 277(18): 1461–1466.
  6. Poulsen MLM, Budtz-Jørgensen E, Bisgaard ML. Surveillance in von Hippel-Lindau disease (vHL). Clin Genet. 2010; 77(1): 49–59.
  7. Knutsson KA, De Benedetto U, Querques G, et al. Primitive retinal vascular abnormalities: tumors and telangiectasias. Ophthalmologica. 2012; 228(2): 67–77.
  8. Renal Cell Carcinoma EAU Guidelines on. 2018.
  9. Palapattu GS, Kristo B, Rajfer J. Paraneoplastic syndromes in urologic malignancy: the many faces of renal cell carcinoma. Rev Urol. 2002; 4(4): 163–170.
  10. Shuin T, Yamasaki I, Tamura K, et al. Von Hippel-Lindau disease: molecular pathological basis, clinical criteria, genetic testing, clinical features of tumors and treatment. Jpn J Clin Oncol. 2006; 36(6): 337–343.
  11. Choyke PL, Glenn GM, Walther MM, et al. von Hippel-Lindau disease: genetic, clinical, and imaging features. Radiology. 1995; 194(3): 629–642.
  12. Clark PE, Cookson MS. The von Hippel-Lindau gene: turning discovery into therapy. Cancer. 2008; 113(7 Suppl): 1768–1778.
  13. Maher E, Sandford R. von Hippel-Lindau Disease: an Update. Current Genetic Medicine Reports. 2019; 7(4): 227–235.
  14. Lonser R, Glenn G, Walther M, et al. von Hippel-Lindau disease. The Lancet. 2003; 361(9374): 2059–2067.
  15. Groulx I, Lee S. Oxygen-dependent ubiquitination and degradation of hypoxia-inducible factor requires nuclear-cytoplasmic trafficking of the von Hippel-Lindau tumor suppressor protein. Mol Cell Biol. 2002; 22(15): 5319–5336.
  16. Strowitzki MJ, Cummins EP, Taylor CT. Protein Hydroxylation by Hypoxia-Inducible Factor (HIF) Hydroxylases: Unique or Ubiquitous? Cells. 2019; 8(5).
  17. Aronow M, Wiley H, Gaudric A, et al. VON HIPPEL–LINDAU DISEASE. Retina. 2019; 39(12): 2243–2253.
  18. Haase VH. The VHL tumor suppressor: master regulator of HIF. Curr Pharm Des. 2009; 15(33): 3895–3903.
  19. Ben-Skowronek I, Kozaczuk S. Von Hippel-Lindau Syndrome. Horm Res Paediatr. 2015; 84(3): 145–152.
  20. Decker J, Neuhaus C, Macdonald F, et al. Clinical utility gene card for: von Hippel-Lindau (VHL). Eur J Hum Genet. 2014; 22(4).
  21. Leeuwaarde RS, Ahmad S, Links TP, et al. Von Hippel-Lindau Syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al. ed. GeneReviews®. University of Washington, Seattle 2018: 1–32.
  22. Kondo K, Kaelin WG. The von Hippel-Lindau tumor suppressor gene. Exp Cell Res. 2001; 264(1): 117–125.
  23. Priesemann M, Davies KM, Perry LA, et al. Benefits of screening in von Hippel-Lindau disease--comparison of morbidity associated with initial tumours in affected parents and children. Horm Res. 2006; 66(1): 1–5.
  24. Santarpia L, Sarlis NJ, Santarpia M, et al. Mosaicism in von Hippel-Lindau disease: an event important to recognize. J Cell Mol Med. 2007; 11(6): 1408–1415.
  25. Yates J. Tuberous sclerosis. European Journal of Human Genetics. 2006; 14(10): 1065–1073.
  26. Portocarrero LK, Quental KN, Samorano LP, et al. Tuberous sclerosis complex: review based on new diagnostic criteria. An Bras Dermatol. 2018; 93(3): 323–331.
  27. Roach ES, Sparagana SP. Diagnosis of tuberous sclerosis complex. J Child Neurol. 2004; 19(9): 643–649.
  28. Kandt RS, Haines JL, Smith M, et al. Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease. Nat Genet. 1992; 2(1): 37–41.
  29. Joinson C, O'Callaghan FJ, Osborne JP, et al. Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex. Psychol Med. 2003; 33(2): 335–344.
  30. DiMario F. Brain Abnormalities in Tuberous Sclerosis Complex. J Child Neurol. 2016; 19(9): 650–657.
  31. McClintock W. Neurologic manifestations of tuberous sclerosis complex. J Child Neurol. 2002; 2(2): 158–163.
  32. Rodrigues DA, Gomes CM, Costa IM. Tuberous sclerosis complex. An Bras Dermatol. 2012; 87(2): 184–196.
  33. Rowley SA, O'Callaghan FJ, Osborne JP. Ophthalmic manifestations of tuberous sclerosis: a population based study. Br J Ophthalmol. 2001; 85(4): 420–423.
  34. Krueger D, Northrup H, Northrup H, et al. Tuberous Sclerosis Complex Surveillance and Management: Recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatric Neurology. 2013; 49(4): 255–265.
  35. Rosset C, Netto CB, Ashton-Prolla P. TSC1 and TSC2 gene mutations and their implications for treatment in Tuberous Sclerosis Complex: a review. Genet Mol Biol. 2017; 40(1): 69–79.
  36. Tee A, Manning B, Roux P, et al. Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb. Curr Biol. 2003; 13(15): 1259–1268.
  37. Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J. 2008; 412(2): 179–190.
  38. Hoogeveen-Westerveld M, Ekong R, Povey S, et al. Functional assessment of TSC1 missense variants identified in individuals with tuberous sclerosis complex. Hum Mutat. 2012; 33(3): 476–479.
  39. Northrup H, Koenig MK, Pearson DA, Au KS. Tuberous Sclerosis Complex-GeneReviews®. GeneReviews®. University of Washington, Seattle 1993.
  40. Strizheva GD, Carsillo T, Kruger WD, et al. The spectrum of mutations in TSC1 and TSC2 in women with tuberous sclerosis and lymphangiomyomatosis. Am J Respir Crit Care Med. 2001; 163(1): 253–258.
  41. Woerner AC, Au KS, Williams AT, et al. Tuberous sclerosis complex and polycystic kidney disease together: an exception to the contiguous gene syndrome. Genet Med. 2006; 8(3): 197–198.
  42. Fox J, Ben-Shachar S, Uliel S, et al. Rare familial TSC2 gene mutation associated with atypical phenotype presentation of Tuberous Sclerosis Complex. Am J Med Genet A. 2017; 173(3): 744–748.
  43. Farach LS, Gibson WT, Sparagana SP, et al. TSC2 c.1864C>T variant associated with mild cases of tuberous sclerosis complex. Am J Med Genet A. 2017; 173(3): 771–775.