open access

Vol 73, No 5 (2023)
Review paper
Published online: 2023-09-26
Get Citation

The influence of fluid therapy on short- and long-term outcomes in patients undergoing liver resection for malignant indications

Marta Dec1, Wojciech Figiel2, Paweł Andruszkiewicz1, Michał Grąt2
·
Nowotwory. Journal of Oncology 2023;73(5):303-308.
Affiliations
  1. 2nd Department of Anaesthesiology and Intensive Care, Medical University of Warsaw, Warsaw, Poland
  2. Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland

open access

Vol 73, No 5 (2023)
Review articles – Liver tumors
Published online: 2023-09-26

Abstract

Although fluid therapy in hepatic surgery affects the postoperative course and morbidity, there is a paucity of unequivocal guidelines in the literature as to which of three fluid strategies to use: liberal, restrictive or goal-directed. We performed a review of literature regarding fluid management strategies in major abdominal procedures, focusing on hepatic sur­gery. The quantity and quality of fluids infused perioperatively is often dependent on the preference of the physician, institutional experience and practices. A liberal fluid regimen carries the risk of impaired wound healing and prolonged ileus, furthermore in liver surgery it may increase blood loss. Restrictive fluid therapy is the mainstay of the anesthetic management in hepatic resections, keeping the central venous pressure low controls outflow from the liver and results in a decrease in intraoperative blood loss. In recent years, goal-directed fluid therapy ( GDFT), as a component of enhanced recovery pathways after surgery (ERAS) programs, has gained in popularity. It is based on the concept of hemodynamic optimization in order to ensure optimal tissue perfusion and oxygen delivery. Furthermore, a fluid infusion strategy should be individualized in terms of the unique pathophysiology of the patient (e.g. cirrhosis) and the specific requirements of the surgical technique (laparoscopic procedures). Controversy regarding often contradictory data, leaves the clinician at a loss as to which fluid strategy will best serve the patient. Therefore, it is imperative to design and conduct clinical trials in a homogenous group of patients to define the optimal type and amount of fluid for patients undergoing hepatic surgery.

Abstract

Although fluid therapy in hepatic surgery affects the postoperative course and morbidity, there is a paucity of unequivocal guidelines in the literature as to which of three fluid strategies to use: liberal, restrictive or goal-directed. We performed a review of literature regarding fluid management strategies in major abdominal procedures, focusing on hepatic sur­gery. The quantity and quality of fluids infused perioperatively is often dependent on the preference of the physician, institutional experience and practices. A liberal fluid regimen carries the risk of impaired wound healing and prolonged ileus, furthermore in liver surgery it may increase blood loss. Restrictive fluid therapy is the mainstay of the anesthetic management in hepatic resections, keeping the central venous pressure low controls outflow from the liver and results in a decrease in intraoperative blood loss. In recent years, goal-directed fluid therapy ( GDFT), as a component of enhanced recovery pathways after surgery (ERAS) programs, has gained in popularity. It is based on the concept of hemodynamic optimization in order to ensure optimal tissue perfusion and oxygen delivery. Furthermore, a fluid infusion strategy should be individualized in terms of the unique pathophysiology of the patient (e.g. cirrhosis) and the specific requirements of the surgical technique (laparoscopic procedures). Controversy regarding often contradictory data, leaves the clinician at a loss as to which fluid strategy will best serve the patient. Therefore, it is imperative to design and conduct clinical trials in a homogenous group of patients to define the optimal type and amount of fluid for patients undergoing hepatic surgery.

Get Citation

Keywords

liver resection; fluid management; goal-directed therapy; restrictive therapy; enhanced recovery pathways after surgery

About this article
Title

The influence of fluid therapy on short- and long-term outcomes in patients undergoing liver resection for malignant indications

Journal

Nowotwory. Journal of Oncology

Issue

Vol 73, No 5 (2023)

Article type

Review paper

Pages

303-308

Published online

2023-09-26

Page views

173

Article views/downloads

223

DOI

10.5603/njo.96564

Bibliographic record

Nowotwory. Journal of Oncology 2023;73(5):303-308.

Keywords

liver resection
fluid management
goal-directed therapy
restrictive therapy
enhanced recovery pathways after surgery

Authors

Marta Dec
Wojciech Figiel
Paweł Andruszkiewicz
Michał Grąt

References (51)
  1. Bellamy MC. Wet, dry or something else? Br J Anaesth. 2006; 97(6): 755–757.
  2. Minto G, Mythen MG. Perioperative fluid management: science, art or random chaos? Br J Anaesth. 2015; 114(5): 717–721.
  3. Miller TE, Myles PS. Perioperative Fluid Therapy for Major Surgery. Anesthesiology. 2019; 130(5): 825–832.
  4. Lilot M, Ehrenfeld JM, Lee C, et al. Variability in practice and factors predictive of total crystalloid administration during abdominal surgery: retrospective two-centre analysis. Br J Anaesth. 2015; 114(5): 767–776.
  5. Brandstrup B, Tønnesen H, Beier-Holgersen R, et al. Danish Study Group on Perioperative Fluid Therapy. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003; 238(5): 641–648.
  6. Myles PS, McIlroy DR, Bellomo R, et al. Australian and New Zealand College of Anaesthetists Clinical Trials Network and the Australian and New Zealand Intensive Care Society Clinical Trials Group. Restrictive versus Liberal Fluid Therapy for Major Abdominal Surgery. N Engl J Med. 2018; 378(24): 2263–2274.
  7. Marjanovic G, Villain C, Juettner E, et al. Impact of different crystalloid volume regimes on intestinal anastomotic stability. Ann Surg. 2009; 249(2): 181–185.
  8. Kulemann B, Timme S, Seifert G, et al. Intraoperative crystalloid overload leads to substantial inflammatory infiltration of intestinal anastomoses-a histomorphological analysis. Surgery. 2013; 154(3): 596–603.
  9. Holte K, Sharrock NE, Kehlet H. Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth. 2002; 89(4): 622–632.
  10. Irish Surgical Research Collaborative. PERioperative Fluid Management in Elective ColecTomy (PERFECT)-a national prospective cohort study. Ir J Med Sci. 2019; 188(4): 1363–1371.
  11. Martin D, Lykoudis PM, Jones G, et al. Impact of postoperative intravenous fluid administration on complications following elective hepato-pancreato-biliary surgery. Hepatobiliary Pancreat Dis Int. 2018; 17(5): 402–407.
  12. Chen BP, Chen M, Bennett S, et al. Systematic Review and Meta-analysis of Restrictive Perioperative Fluid Management in Pancreaticoduodenectomy. World J Surg. 2018; 42(9): 2938–2950.
  13. Bundgaard-Nielsen M, Holte K, Secher NH, et al. Monitoring of peri-operative fluid administration by individualized goal-directed therapy. Acta Anaesthesiol Scand. 2007; 51(3): 331–340.
  14. Lobo SM, de Oliveira NE. Clinical review: What are the best hemodynamic targets for noncardiac surgical patients? Crit Care. 2013; 17(2): 210.
  15. Calvo-Vecino JM, Ripollés-Melchor J, Mythen MG, et al. FEDORA Trial Investigators Group. Effect of goal-directed haemodynamic therapy on postoperative complications in low-moderate risk surgical patients: a multicentre randomised controlled trial (FEDORA trial). Br J Anaesth. 2018; 120(4): 734–744.
  16. Grocott MPW, Mythen MG, Gan TJ. Perioperative fluid management and clinical outcomes in adults. Anesth Analg. 2005; 100(4): 1093–1106.
  17. Price HL, Deutsch S, Marshall BE, et al. Hemodynamic and metabolic effects of hemorrhage in man, with particular reference to the splanchnic circulation. Circ Res. 1966; 18(5): 469–474.
  18. Pestaña D, Espinosa E, Eden A, et al. Perioperative goal-directed hemodynamic optimization using noninvasive cardiac output monitoring in major abdominal surgery: a prospective, randomized, multicenter, pragmatic trial: POEMAS Study (PeriOperative goal-directed thErapy in Major Abdominal Surgery). Anesth Analg. 2014; 119(3): 579–587.
  19. Pędziwiatr M, Mavrikis J, Witowski J, et al. Current status of enhanced recovery after surgery (ERAS) protocol in gastrointestinal surgery. Med Oncol. 2018; 35(6): 95.
  20. Malbrain ML, Langer T, Annane D, et al. Intravenous fluid therapy in the perioperative and critical care setting: Executive summary of the International Fluid Academy (IFA). Ann Intensive Care. 2020; 10(1): 64.
  21. Wojciechowska U, Barańska K, Miklewska M, et al. Cancer incidence and mortality in Poland in 2020. Nowotwory. Journal of Oncology. 2023; 73(3): 129–145.
  22. Cunningham JD, Fong Y, Shriver C, et al. One hundred consecutive hepatic resections. Blood loss, transfusion, and operative technique. Arch Surg. 1994; 129(10): 1050–1056.
  23. Melendez JA, Arslan V, Fischer ME, et al. Perioperative outcomes of major hepatic resections under low central venous pressure anesthesia: blood loss, blood transfusion, and the risk of postoperative renal dysfunction. J Am Coll Surg. 1998; 187(6): 620–625.
  24. Jones RM, Moulton CE, Hardy KJ. Central venous pressure and its effect on blood loss during liver resection. Br J Surg. 1998; 85(8): 1058–1060.
  25. Chen H, Merchant NB, Didolkar MS. Hepatic resection using intermittent vascular inflow occlusion and low central venous pressure anesthesia improves morbidity and mortality. J Gastrointest Surg. 2000; 4(2): 162–167.
  26. Smyrniotis V, Kostopanagiotou G, Theodoraki K, et al. The role of central venous pressure and type of vascular control in blood loss during major liver resections. Am J Surg. 2004; 187(3): 398–402.
  27. Eid EA, Sheta SA, Mansour E. Low central venous pressure anesthesia in major hepatic resection. Middle East J Anaesthesiol. 2005; 18(2): 367–377.
  28. Huntington JT, Royall NA, Schmidt CR. Minimizing blood loss during hepatectomy: a literature review. J Surg Oncol. 2014; 109(2): 81–88.
  29. Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care. 2011; 1(1): 1.
  30. Correa-Gallego C, Tan KS, Arslan-Carlon V, et al. Goal-Directed Fluid Therapy Using Stroke Volume Variation for Resuscitation after Low Central Venous Pressure-Assisted Liver Resection: A Randomized Clinical Trial. J Am Coll Surg. 2015; 221(2): 591–601.
  31. Weinberg L, Ianno D, Churilov L, et al. Goal directed fluid therapy for major liver resection: A multicentre randomized controlled trial. Ann Med Surg (Lond). 2019; 45: 45–53.
  32. Kim Y, Ejaz A, Gani F, et al. Crystalloid administration among patients undergoing liver surgery: Defining patient- and provider-level variation. Surgery. 2016; 159(2): 389–398.
  33. Lilot M, Ehrenfeld JM, Lee C, et al. Variability in practice and factors predictive of total crystalloid administration during abdominal surgery: retrospective two-centre analysis. Br J Anaesth. 2015; 114(5): 767–776.
  34. Warner SG, Jutric Z, Nisimova L, et al. Early recovery pathway for hepatectomy: data-driven liver resection care and recovery. Hepatobiliary Surg Nutr. 2017; 6(5): 297–311.
  35. Giustiniano E, Nisi F, Rocchi L, et al. Perioperative Management of Complex Hepatectomy for Colorectal Liver Metastases: The Alliance between the Surgeon and the Anesthetist. Cancers (Basel). 2021; 13(9).
  36. Yoshino O, Perini MV, Christophi C, et al. Perioperative fluid management in major hepatic resection: an integrative review. Hepatobiliary Pancreat Dis Int. 2017; 16(5): 458–469.
  37. Charbonneau H, Riu B, Faron M, et al. Predicting preload responsiveness using simultaneous recordings of inferior and superior vena cavae diameters. Crit Care. 2014; 18(5): 473.
  38. Rola P, Miralles-Aguiar F, Argaiz E, et al. Clinical applications of the venous excess ultrasound (VExUS) score: conceptual review and case series. Ultrasound J. 2021; 13(1): 32.
  39. Jin D, Liu M, Huang J, et al. Gas embolism under standard versus low pneumoperitoneum pressure during laparoscopic liver resection (GASES): study protocol for a randomized controlled trial. Trials. 2021; 22(1): 807.
  40. Dunki-Jacobs EM, Philips P, Scoggins CR, et al. Stroke volume variation in hepatic resection: a replacement for standard central venous pressure monitoring. Ann Surg Oncol. 2014; 21(2): 473–478.
  41. Tranchart H, Dagher I. Laparoscopic liver resection: A review. Journal of Visceral Surgery. 2014; 151(2): 107–115.
  42. Abbas N, Makker J, Abbas H, et al. Perioperative Care of Patients With Liver Cirrhosis: A Review. Health Serv Insights. 2017; 10: 1178632917691270.
  43. Kiamanesh D, Rumley J, Moitra VK. Monitoring and managing hepatic disease in anaesthesia. Br J Anaesth. 2013; 111 Suppl 1: i50–i61.
  44. Mansour A, Watson W, Shayani V, et al. Abdominal operations in patients with cirrhosis: still a major surgical challenge. Surgery. 1997; 122(4): 730–5; discussion 735.
  45. Telem DA, Schiano T, Goldstone R, et al. Factors that predict outcome of abdominal operations in patients with advanced cirrhosis. Clin Gastroenterol Hepatol. 2010; 8(5): 451–7, quiz e58.
  46. Weinberg L, Pearce B, Sullivan R, et al. The effects of plasmalyte-148 vs. Hartmann's solution during major liver resection: a multicentre, double-blind, randomized controlled trial. Minerva Anestesiol. 2015; 81(12): 1288–1297.
  47. Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013(2): CD000567.
  48. Bagshaw SM, Chawla LS. Hydroxyethyl starch for fluid resuscitation in critically ill patients. Can J Anaesth. 2013; 60(7): 709–713.
  49. Mutter TC, Ruth CA, Dart AB, et al. Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev. 2010(1): CD007594.
  50. Roberts I, Blackhall K, Alderson P, et al. Albumin Reviewers (Alderson P, Bunn F, Li Wan Po A, Li L, Blackhall K, Roberts I, Schierhout G), Albumin Reviewers, Cochrane Injuries Group Albumin Reviewers. Human albumin administration in critically ill patients: systematic review of randomised controlled trials. BMJ. 1998; 317(7153): 235–240.
  51. Finfer S, Bellomo R, Boyce N, et al. SAFE Study Investigators. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004; 350(22): 2247–2256.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Wydawcą serwisu jest VM Media Group sp. z o.o., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl