Vol 54, No 5 (2020)
Review Article
Published online: 2020-10-15

open access

Page views 2450
Article views/downloads 941
Get Citation

Connect on Social Media

Connect on Social Media

Secondary progressive multiple sclerosis — from neuropathology to definition and effective treatment

Monika Adamczyk-Sowa1, Bożena Adamczyk1, Alina Kułakowska2, Konrad Rejdak3, Przemysław Nowacki4
Pubmed: 33058113
Neurol Neurochir Pol 2020;54(5):384-398.


Introduction. There is no single, commonly accepted, standard definition of secondary progressive multiple sclerosis (SPMS), an absence that poses a challenge for clinicians.

State of the art. SPMS is characterised by inflammation, neurodegeneration and disease progression with the presence or absence of relapses. No biochemical or radiological biomarkers are currently available to indicate the precise secondary progressive course in individual patients. The retrospective approach to identifying SPMS patients raises many difficulties, especially in terms of determining the time point of progression. Currently, the most precise diagnosis of SPMS is based on the definition proposed by Lorscheider et al., where SPMS is defined as a disability progression by 1 step on the Expanded Disability Status Scale (EDSS) in patients with EDSS ≤ 5.5 or of 0.5 EDSS steps in patients with EDSS ≥ 6 in the absence of a relapse, a minimum EDSS score of 4 and pyramidal functional system (FS) score of 2, and confirmed progression over ≥ 3 months, including confirmation within the leading FS.

Clinical implications. The need to establish criteria for the diagnosis of SPMS is currently of crucial importance due to emerging treatment opportunities including siponimod, a sphingosine 1-phosphate (S1P) receptor modulator selective for S1P1 and S1P5 receptors. It is reasonable to introduce drugs at the earliest possible stage of lesion progression to reduce inflammation a nd t o p rotect t he c entral n ervous s ystem ( CNS) a gainst i rreversible n eurodegeneration.

Future directions. Further studies with prospective, multicentre and long term follow-up design are needed to provide better insights into SP course in MS patients. This should be supported by radiological, biochemical and pathological evaluations to help establish reliable and sensitive biomarkers to guide clinical practice.

Article available in PDF format

View PDF Download PDF file


  1. Khalil M, Teunissen CE, Otto M, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol. 2018; 14(10): 577–589.
  2. Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014; 83(3): 278–286.
  3. Lublin FD. New multiple sclerosis phenotypic classification. Eur Neurol. 2014; 72 Suppl 1: 1–5.
  4. Mahad D, Trapp B, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. The Lancet Neurology. 2015; 14(2): 183–193.
  5. Ferguson B, Matyszak MK, Esiri MM, et al. Axonal damage in acute multiple sclerosis lesions. Brain. 1997; 120 ( Pt 3): 393–399.
  6. Trapp BD, Peterson J, Ransohoff RM, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998; 338(5): 278–285.
  7. Bjartmar C, Kidd G, M�rk S, et al. Neurological disability correlates with spinal cord axonal loss and reducedN-acetyl aspartate in chronic multiple sclerosis patients. Annals of Neurology. 2001; 48(6): 893–901, doi: 10.1002/1531-8249(200012)48:6<893::aid-ana10>3.0.co;2-b.
  8. Baldassari LE, Fox RJ. Therapeutic Advances and Challenges in the Treatment of Progressive Multiple Sclerosis. Drugs. 2018; 78(15): 1549–1566.
  9. Ruano L, Portaccio E, Goretti B, et al. Age and disability drive cognitive impairment in multiple sclerosis across disease subtypes. Mult Scler. 2017; 23(9): 1258–1267.
  10. Curti E, Graziuso S, Tsantes E, et al. Correlation between cortical lesions and cognitive impairment in multiple sclerosis. Brain Behav. 2018; 8(6): e00955.
  11. Andreasen AK, Iversen P, Marstrand L, et al. Structural and cognitive correlates of fatigue in progressive multiple sclerosis. Neurol Res. 2019; 41(2): 168–176.
  12. Højsgaard Chow H, Schreiber K, Magyari M, et al. Progressive multiple sclerosis, cognitive function, and quality of life. Brain Behav. 2018; 8(2): e00875.
  13. Kizlaitienė R, Kaubrys G, Giedraitienė N, et al. Composite Marker of Cognitive Dysfunction and Brain Atrophy is Highly Accurate in Discriminating Between Relapsing-Remitting and Secondary Progressive Multiple Sclerosis. Med Sci Monit. 2017; 23: 588–597.
  14. Carotenuto A, Costabile T, Moccia M, et al. Olfactory function and cognition in relapsing-remitting and secondary-progressive multiple sclerosis. Mult Scler Relat Disord. 2019; 27: 1–6.
  15. Connick P, Chandran S, Bak T. Patterns of Cognitive Dysfunction in Progressive MS. Behavioural Neurology. 2013; 27(3): 259–265.
  16. Kappos, L., A. Bar-Or, B.A.C. Cree, R.J. Fox, G. Giovannoni, R. Gold, P. Vermersch, D.L. Arnold, S. Arnould, T. Scherz, C. Wolf, E. Wallstrom, F. Dahlke, and E.C. Investigators, Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet. 2018; 391: 1263–1273.
  17. Franklin RJM, Ffrench-Constant C. Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci. 2008; 9(11): 839–855.
  18. BROWNELL B, HUGHES JT. The distribution of plaques in the cerebrum in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1962; 25: 315–320.
  19. Peterson JW, Bö L, Mörk S, et al. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol. 2001; 50(3): 389–400.
  20. Kutzelnigg A, Lucchinetti CF, Stadelmann C, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005; 128(Pt 11): 2705–2712.
  21. Ontaneda D, Fox R, Chataway J. Clinical trials in progressive multiple sclerosis: lessons learned and future perspectives. The Lancet Neurology. 2015; 14(2): 208–223.
  22. Tremlett H, Zhao Y, Rieckmann P, et al. New perspectives in the natural history of multiple sclerosis. Neurology. 2010; 74(24): 2004–2015.
  23. Ontaneda D, Thompson A, Fox R, et al. Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. The Lancet. 2017; 389(10076): 1357–1366.
  24. Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol. 2012; 8(11): 647–656.
  25. Lassmann H. Targets of therapy in progressive MS. Mult Scler. 2017; 23(12): 1593–1599.
  26. Nakamura K, Fox R, Fisher E. CLADA: cortical longitudinal atrophy detection algorithm. Neuroimage. 2011; 54(1): 278–289.
  27. Nakamura K, Guizard N, Fonov VS, et al. Jacobian integration method increases the statistical power to measure gray matter atrophy in multiple sclerosis. Neuroimage Clin. 2014; 4: 10–17.
  28. Kuhlmann T, Lingfeld G, Bitsch A, et al. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain. 2002; 125(Pt 10): 2202–2212.
  29. Katz Sand I, Krieger S, Farrell C, et al. Diagnostic uncertainty during the transition to secondary progressive multiple sclerosis. Mult Scler. 2014; 20(12): 1654–1657.
  30. Lorscheider J, Buzzard K, Jokubaitis V, et al. MSBase Study Group. Defining secondary progressive multiple sclerosis. Brain. 2016; 139(Pt 9): 2395–2405.
  31. Petzold A, Boer Jde, Schippling S, et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. The Lancet Neurology. 2010; 9(9): 921–932.
  32. Abalo-Lojo JM, Limeres CC, Gómez MA, et al. Retinal nerve fiber layer thickness, brain atrophy, and disability in multiple sclerosis patients. J Neuroophthalmol. 2014; 34(1): 23–28.
  33. Saidha S, Syc SB, Durbin MK, et al. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Mult Scler. 2011; 17(12): 1449–1463.
  34. Narayanan D, Cheng H, Bonem KN, et al. Tracking changes over time in retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in multiple sclerosis. Mult Scler. 2014; 20(10): 1331–1341.
  35. Lassmann H, Brück W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain Pathol. 2007; 17(2): 210–218.
  36. Behrangi, N., F. Fischbach, and M. Kipp, Mechanism of Siponimod: Anti-Inflammatory and Neuroprotective Mode of Action. 2019: Cells.
  37. Zhou, L., J.E. Lopes, M.M. Chong, Ivanov, II, R. Min, G.D. Victora, Y. Shen, J. Du, Y.P. Rubtsov, A.Y. Rudensky, S.F. Ziegler, and D.R. Littman, TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature. 2008; 453: 236–40.
  38. Carlson T, Kroenke M, Rao P, et al. The Th17-ELR+ CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J Exp Med. 2008; 205(4): 811–823.
  39. Na SY, Hermann A, Sanchez-Ruiz M, et al. Oligodendrocytes enforce immune tolerance of the uninfected brain by purging the peripheral repertoire of autoreactive CD8+ T cells. Immunity. 2012; 37(1): 134–146.
  40. Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015; 212(7): 991–999.
  41. Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015; 523(7560): 337–341.
  42. Höftberger R, Lassmann H. Inflammatory demyelinating diseases of the central nervous system. Handb Clin Neurol. 2017; 145: 263–283.
  43. Radick, L. and S.R. Mehr, The Latest Innovations in the Drug Pipeline for Multiple Sclerosis. Am Health Drug Benefits. 2015; 8: 448–53.
  44. Hendrickx DAE, van Eden CG, Schuurman KG, et al. Staining of HLA-DR, Iba1 and CD68 in human microglia reveals partially overlapping expression depending on cellular morphology and pathology. J Neuroimmunol. 2017; 309: 12–22.
  45. Park E, Gallezot JD, Delgadillo A, et al. (11)C-PBR28 imaging in multiple sclerosis patients and healthy controls: test-retest reproducibility and focal visualization of active white matter areas. Eur J Nucl Med Mol Imaging. 2015; 42(7): 1081–1092.
  46. Sádaba MC, Tzartos J, Paíno C, et al. Axonal and oligodendrocyte-localized IgM and IgG deposits in MS lesions. J Neuroimmunol. 2012; 247(1-2): 86–94.
  47. Haider L, Fischer MT, Frischer JM, et al. Oxidative damage in multiple sclerosis lesions. Brain. 2011; 134(Pt 7): 1914–1924.
  48. Ciccarelli O, Barkhof F, Bodini B, et al. Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. The Lancet Neurology. 2014; 13(8): 807–822.
  49. Gaitán MI, Shea CD, Evangelou IE, et al. Evolution of the blood-brain barrier in newly forming multiple sclerosis lesions. Ann Neurol. 2011; 70(1): 22–29.
  50. Singh S, Dallenga T, Winkler A, et al. Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis. J Neuroinflammation. 2017; 14(1): 57.
  51. Datta S, Staewen TD, Cofield SS, et al. MRI Analysis Center at Houston, CombiRx Investigators Group. Regional gray matter atrophy in relapsing remitting multiple sclerosis: baseline analysis of multi-center data. Mult Scler Relat Disord. 2015; 4(2): 124–136.
  52. Kuhlmann T, Ludwin S, Prat A, et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 2017; 133(1): 13–24.
  53. Kearney H, Miller DH, Ciccarelli O. Spinal cord MRI in multiple sclerosis--diagnostic, prognostic and clinical value. Nat Rev Neurol. 2015; 11(6): 327–338.
  54. Petrova N, Carassiti D, Altmann DR, et al. Axonal loss in the multiple sclerosis spinal cord revisited. Brain Pathol. 2018; 28(3): 334–348.
  55. Dekker I, Wattjes MP. Brain and Spinal Cord MR Imaging Features in Multiple Sclerosis and Variants. Neuroimaging Clin N Am. 2017; 27(2): 205–227.
  56. Luchetti S, Fransen NL, van Eden CG, et al. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 2018; 135(4): 511–528.
  57. Nowacki P, Koziarska D, Masztalewicz M. Microglia and astroglia proliferation within the normal appearing white matter in histologically active and inactive multiple sclerosis. Folia Neuropathol. 2019; 57(3): 249–257.
  58. Thompson A, Banwell B, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology. 2018; 17(2): 162–173.
  59. Koch MW, Cutter G, Stys PK, et al. Treatment trials in progressive MS--current challenges and future directions. Nat Rev Neurol. 2013; 9(9): 496–503.
  60. Rudick RA, Kappos L. Measuring disability in relapsing-remitting MS. Neurology. 2010; 75(4): 296–297.
  61. Ebers GC, Heigenhauser L, Daumer M, et al. Disability as an outcome in MS clinical trials. Neurology. 2008; 71(9): 624–631.
  62. Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology. 1996; 46(4): 907–911.
  63. Rovaris M, Confavreux C, Furlan R, et al. Secondary progressive multiple sclerosis: current knowledge and future challenges. The Lancet Neurology. 2006; 5(4): 343–354.
  64. Marrie Ra, Horwitz R, Cutter G, et al. Comorbidity, socioeconomic status and multiple sclerosis. Mult Scler. 2008; 14(8): 1091–1098.
  65. Tomic, D., L. Kappos, D.P. Meier, D. Häring, R. Meinert, G. Giovannoni, and T. Chitnis, Predictors of Conversion to Secondary Progressive Multiple Sclerosis in Patients With Relapsing–Remitting Multiple Sclerosis (P2. 393. ; 2018: AAN.
  66. Lamers I, Feys P. Assessing upper limb function in multiple sclerosis. Mult Scler. 2014; 20(7): 775–784.
  67. Brissart H, Sauvée M, Latarche C, et al. Integration of cognitive impairment in the expanded disability status scale of 215 patients with multiple sclerosis. Eur Neurol. 2010; 64(6): 345–350.
  68. Malmeström C, Haghighi S, Rosengren L, et al. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology. 2003; 61(12): 1720–1725.
  69. Kuhle J, Plattner K, Bestwick JP, et al. A comparative study of CSF neurofilament light and heavy chain protein in MS. Mult Scler. 2013; 19(12): 1597–1603.
  70. Gunnarsson M, Malmeström C, Axelsson M, et al. Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann Neurol. 2011; 69(1): 83–89.
  71. Semra YK, Seidi OA, Sharief MK. Heightened intrathecal release of axonal cytoskeletal proteins in multiple sclerosis is associated with progressive disease and clinical disability. Journal of Neuroimmunology. 2002; 122(1-2): 132–139.
  72. Petzold A, Eikelenboom MJ, Gveric D, et al. Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations. Brain. 2002; 125(Pt 7): 1462–1473.
  73. Axelsson M, Malmeström C, Nilsson S, et al. Glial fibrillary acidic protein: a potential biomarker for progression in multiple sclerosis. J Neurol. 2011; 258(5): 882–888.
  74. Leray E, Yaouanq J, Le Page E, et al. Evidence for a two-stage disability progression in multiple sclerosis. Brain. 2010; 133(Pt 7): 1900–1913.
  75. Scalfari A, Neuhaus A, Degenhardt A, et al. The natural history of multiple sclerosis: a geographically based study 10: relapses and long-term disability. Brain. 2010; 133(Pt 7): 1914–1929.
  76. Paz Soldán MM, Novotna M, Abou Zeid N, et al. Relapses and disability accumulation in progressive multiple sclerosis. Neurology. 2015; 84(1): 81–88.
  77. Tremlett H, Devonshire V. Natural history of secondary-progressive multiple sclerosis. Mult Scler. 2008; 14(3): 314–324.
  78. Manouchehrinia, A., F. Zhu, D. Piani-Meier, M. Lange, D.G. Silva, R. Carruthers, A. Glaser, E. Kingwell, H. Tremlett, and J. Hillert, Predicting risk of secondary progression in multiple sclerosis: A nomogram. Mult Scler. 2019; 25: 1102–1112.
  79. Fambiatos, A., V. Jokubaitis, D. Horakova, E. Kubala Havrdova, M. Trojano, A. Prat, M. Girard, P. Duquette, A. Lugaresi, G. Izquierdo, F. Grand'Maison, P. Grammond, P. Sola, D. Ferraro, R. Alroughani, M. Terzi, R. Hupperts, C. Boz, J. Lechner-Scott, E. Pucci, R. Bergamaschi, V. Van Pesch, S. Ozakbas, F. Granella, R. Turkoglu, G. Iuliano, D. Spitaleri, P. McCombe, C. Solaro, M. Slee, R. Ampapa, A. Soysal, T. Petersen, J.L. Sanchez-Menoyo, F. Verheul, J. Prevost, Y. Sidhom, B. Van Wijmeersch, S. Vucic, E. Cristiano, M.L. Saladino, N. Deri, M. Barnett, J. Olascoaga, F. Moore, O. Skibina, O. Gray, Y. Fragoso, B. Yamout, C. Shaw, B. Singhal, N. Shuey, S. Hodgkinson, A. Altintas, T. Al-Harbi, T. Csepany, B. Taylor, J. Hughes, J.K. Jun, A. van der Walt, T. Spelman, H. Butzkueven, and T. Kalincik, Risk of secondary progressive multiple sclerosis: A longitudinal study. Mult Scler. 2020; 26: 79–90.
  80. Kappos L, Fazekas F. 2015 Multiple Sclerosis Experts Summit. Neurodegener Dis Manag. 2015; 5(6 Suppl): 1–2.
  81. Kapoor R, Ho PR, Campbell N, et al. Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND): a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension. The Lancet Neurology. 2018; 17(5): 405–415.
  82. Montalban X, Hauser SL, Kappos L, et al. ORATORIO Clinical Investigators. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N Engl J Med. 2017; 376(3): 209–220.
  83. Wolinsky JS, Narayana PA, O'Connor P, et al. PROMiSe Trial Study Group. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann Neurol. 2007; 61(1): 14–24.
  84. Hawker K, O'Connor P, Freedman MS, et al. OLYMPUS trial group. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol. 2009; 66(4): 460–471.
  85. Lublin F, Miller D, Freedman M, et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. The Lancet. 2016; 387(10023): 1075–1084.
  86. Wolinsky J. The PRO MiSe trial: baseline data review and progress report. Multiple Sclerosis Journal. 2017; 10(3_suppl): S65–S72.
  87. Hauser SL, Waubant E, Arnold DL, et al. HERMES Trial Group. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008; 358(7): 676–688.
  88. Frischer JM, Bramow S, Dal-Bianco A, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009; 132(Pt 5): 1175–1189.
  89. Abbatemarco JR, Fox RJ, Li H, et al. Vitamin D and MRI measures in progressive multiple sclerosis. Mult Scler Relat Disord. 2019; 35: 276–282.
  90. Nathan J, Khedekar Kale D, Naik VD, et al. Dietary Therapy in Secondary Progressive Multiple Sclerosis: A Case Report. Cureus. 2019; 11(8): e5341.
  91. Chan D, Binks S, Nicholas J, et al. Effect of high-dose simvastatin on cognitive, neuropsychiatric, and health-related quality-of-life measures in secondary progressive multiple sclerosis: secondary analyses from the MS-STAT randomised, placebo-controlled trial. The Lancet Neurology. 2017; 16(8): 591–600.
  92. Goodman AD, Anadani N, Gerwitz L. Siponimod in the treatment of multiple sclerosis. Expert Opin Investig Drugs. 2019; 28(12): 1051–1057.
  93. Martinelli Boneschi F, Rovaris M, Capra R, et al. Mitoxantrone for multiple sclerosis. Cochrane Database Syst Rev. 2005(4): CD002127.
  94. Chartier N, Epstein J, Soudant M, et al. Clinical follow-up of 411 patients with relapsing and progressive multiple sclerosis 10 years after discontinuing mitoxantrone treatment: a real-life cohort study. Eur J Neurol. 2018; 25(12): 1439–1445.
  95. Wawrzyniak S, Rzepiński Ł. Is there a new place for mitoxantrone in the treatment of multiple sclerosis? Neurol Neurochir Pol. 2020; 54(1): 54–61.
  96. Sedel F, Bernard D, Mock DM, et al. Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis. Neuropharmacology. 2016; 110(Pt B): 644–653.
  97. Tourbah A, Lebrun-Frenay C, Edan G, et al. MS-SPI study group. MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: A randomised, double-blind, placebo-controlled study. Mult Scler. 2016; 22(13): 1719–1731.
  98. Spain R, Powers K, Murchison C, et al. Lipoic acid in secondary progressive MS: A randomized controlled pilot trial. Neurol Neuroimmunol Neuroinflamm. 2017; 4(5): e374.
  99. La Mantia L, Vacchi L, Di Pietrantonj C, et al. Interferon beta for secondary progressive multiple sclerosis. Cochrane Database Syst Rev. 2012; 1: CD005181.
  100. Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis. European Study Group on interferon beta-1b in secondary progressive MS. Lancet. 1998; 352: 1491–7.
  101. Kappos L, Weinshenker B, Pozzilli C, et al. European (EU-SPMS) Interferon beta-1b in Secondary Progressive Multiple Sclerosis Trial Steering Committee and Independent Advisory Board, North American (NA-SPMS) Interferon beta-1b in Secondary Progressive Multiple Sclerosis Trial Steering Committee and Independent Advisory Board. Interferon beta-1b in secondary progressive MS: a combined analysis of the two trials. Neurology. 2004; 63(10): 1779–1787.
  102. Panitch H, Miller A, Paty D, et al. North American Study Group on Interferon beta-1b in Secondary Progressive MS. Interferon beta-1b in secondary progressive MS: results from a 3-year controlled study. Neurology. 2004; 63(10): 1788–1795.
  103. Li DK, Zhao GJ, Paty DW, et al. University of British Columbia MS/MRI Analysis Research Group. The SPECTRIMS Study Group. Randomized controlled trial of interferon-beta-1a in secondary progressive MS: MRI results. Neurology. 2001; 56(11): 1505–1513.
  104. Andersen O, Elovaara I, Färkkilä M, et al. Multicentre, randomised, double blind, placebo controlled, phase III study of weekly, low dose, subcutaneous interferon beta-1a in secondary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry. 2004; 75(5): 706–710.
  105. Cohen JA, Cutter GR, Fischer JS, et al. IMPACT Investigators. Benefit of interferon beta-1a on MSFC progression in secondary progressive MS. Neurology. 2002; 59(5): 679–687.
  106. Ravnborg M, Blinkenberg M, Sellebjerg F, et al. Responsiveness of the Multiple Sclerosis Impairment Scale in comparison with the Expanded Disability Status Scale. Mult Scler. 2005; 11(1): 81–84.
  107. Filippi M, Rossi P, Campi A, et al. Serial Contrast-Enhanced MR in Patients with Multiple Sclerosis and Varying Levels of Disability. Journal of Neuro-Ophthalmology. 1999; 19(2): 115.
  108. Wolinsky JS, Narayana PA, Noseworthy JH, et al. Linomide in relapsing and secondary progressive MS: part II: MRI results. MRI Analysis Center of the University of Texas-Houston, Health Science Center, and the North American Linomide Investigators. Neurology. 2000; 54(9): 1734–1741.
  109. Zhao Y, Petkau AJ, Traboulsee A, et al. Does MRI lesion activity regress in secondary progressive multiple sclerosis? Mult Scler. 2010; 16(4): 434–442.
  110. Amato MP, Ponziani G. Quantification of impairment in MS: discussion of the scales in use. Mult Scler. 1999; 5(4): 216–219.
  111. Confavreux C, Vukusic S, Adeleine P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain. 2003; 126(Pt 4): 770–782.
  112. Eriksson M, Andersen O, Runmarker B. Long-term follow up of patients with clinically isolated syndromes, relapsing-remitting and secondary progressive multiple sclerosis. Mult Scler. 2003; 9(3): 260–274.
  113. Tremlett H, Paty D, Devonshire V. Disability progression in multiple sclerosis is slower than previously reported. Neurology. 2006; 66(2): 172–177.
  114. Tedeholm H, Lycke J, Skoog B, et al. Time to secondary progression in patients with multiple sclerosis who were treated with first generation immunomodulating drugs. Mult Scler. 2013; 19(6): 765–774.
  115. Scalfari A, Neuhaus A, Daumer M, et al. Onset of secondary progressive phase and long-term evolution of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2014; 85(1): 67–75.
  116. Ribbons KA, McElduff P, Boz C, et al. Male Sex Is Independently Associated with Faster Disability Accumulation in Relapse-Onset MS but Not in Primary Progressive MS. PLoS One. 2015; 10(6): e0122686.
  117. Brown JW, Coles A, Horakova D, et al. MSBase Study Group. Association of Initial Disease-Modifying Therapy With Later Conversion to Secondary Progressive Multiple Sclerosis. JAMA. 2019; 321(2): 175–187.
  118. Lizak, N., C.B. Malpas, S. Sharmin, E.K. Havrdova, D. Horakova, G. Izquierdo, S. Eichau, A. Lugaresi, P. Duquette, M. Girard, A. Prat, C. Larochelle, M. Trojano, F. Grand'Maison, P. Grammond, P. Sola, D. Ferraro, R. Hupperts, R. Bergamaschi, C. Boz, V. Van Pesch, D. Spitaleri, M. Terzi, T. Kalincik, and M.S.S. Group, Association of Sustained Immunotherapy With Disability Outcomes in Patients With Active Secondary Progressive Multiple Sclerosis. 2020: JAMA.
  119. Selmaj K, Li D, Hartung HP, et al. Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. The Lancet Neurology. 2013; 12(8): 756–767.

Neurologia i Neurochirurgia Polska