open access

Vol 53, No 2 (2019)
Review articles
Published online: 2019-03-11
Submitted: 2019-01-22
Accepted: 2019-01-22
Get Citation

Positron emission tomography neuroimaging in neurodegenerative diseases: Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis

Krzysztof Barc, Magdalena Kuźma-Kozakiewicz
DOI: 10.5603/PJNNS.a2019.0013
Pubmed: 30855701
Neurol Neurochir Pol 2019;53(2):99-112.

open access

Vol 53, No 2 (2019)
Review articles
Published online: 2019-03-11
Submitted: 2019-01-22
Accepted: 2019-01-22


Neurodegenerative diseases are a growing problem of ageing societies. Their insidious onset, and the lack of reliable biomarkers, result in significant diagnosis delays. This article summarises the results of studies on the use of positron emission tomography (PET) in the diagnosis of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. It focuses on clinical-pathogenetic aspects of individual diseases, as well as disease-specific patterns relevant in differential diagnosis and in assessing the risk of disease development and prognosis.


Neurodegenerative diseases are a growing problem of ageing societies. Their insidious onset, and the lack of reliable biomarkers, result in significant diagnosis delays. This article summarises the results of studies on the use of positron emission tomography (PET) in the diagnosis of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. It focuses on clinical-pathogenetic aspects of individual diseases, as well as disease-specific patterns relevant in differential diagnosis and in assessing the risk of disease development and prognosis.

Get Citation


Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, positron emission tomography

About this article

Positron emission tomography neuroimaging in neurodegenerative diseases: Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis


Neurologia i Neurochirurgia Polska


Vol 53, No 2 (2019)



Published online






Bibliographic record

Neurol Neurochir Pol 2019;53(2):99-112.


Alzheimer’s disease
Parkinson’s disease
amyotrophic lateral sclerosis
positron emission tomography


Krzysztof Barc
Magdalena Kuźma-Kozakiewicz

References (148)
  1. Rabinovici GD. The translational journey of brain β-amyloid imaging: from positron emission tomography to autopsy to clinic. JAMA Neurol. 2015; 72(3): 265–266.
  2. Zhu A, Lee D, Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol. 2011; 38(1): 55–69.
  3. Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M. Alzheimer's Disease International; London: 2015. World Alzheimer Report 2015. The Global Impact of Dementia. An analysis of prevalence, incidence, costs and trends. World Alzheimer's Report.
  4. Alexander GE, Chen K, Pietrini P, et al. Longitudinal PET Evaluation of Cerebral Metabolic Decline in Dementia: A Potential Outcome Measure in Alzheimer's Disease Treatment Studies. Am J Psychiatry. 2002; 159(5): 738–745.
  5. Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005; 32(4): 486–510.
  6. Minoshima S, Giordani B, Berent S, et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol. 1997; 42(1): 85–94.
  7. Herholz K, Salmon E, Perani D, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage. 2002; 17(1): 302–316.
  8. Kim EJ, Cho SS, Jeong Y, et al. Glucose metabolism in early onset versus late onset Alzheimer's disease: an SPM analysis of 120 patients. Brain. 2005; 128(Pt 8): 1790–1801.
  9. Nestor PJ, Altomare D, Festari C, et al. EANM-EAN Task Force for the Prescription of FDG-PET for Dementing Neurodegenerative Disorders. Clinical utility of FDG-PET for the differential diagnosis among the main forms of dementia. Eur J Nucl Med Mol Imaging. 2018; 45(9): 1509–1525.
  10. Whitwell J, Graff-Radford J, Tosakulwong N, et al. [18 F]AV-1451 clustering of entorhinal and cortical uptake in Alzheimer's disease. Annals of Neurology. 2018; 83(2): 248–257.
  11. Tetzloff KA, Graff-Radford J, Martin PR, et al. Regional Distribution, Asymmetry, and Clinical Correlates of Tau Uptake on [18F]AV-1451 PET in Atypical Alzheimer's Disease. J Alzheimers Dis. 2018; 62(4): 1713–1724.
  12. Patwardhan MB, McCrory DC, Matchar DB, et al. Alzheimer disease: operating characteristics of PET--a meta-analysis. Radiology. 2004; 231(1): 73–80.
  13. Bloudek LM, Spackman DE, Blankenburg M, et al. Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer's disease. J Alzheimers Dis. 2011; 26(4): 627–645.
  14. Herholz K, Westwood S, Haense C, et al. Evaluation of a calibrated (18)F-FDG PET score as a biomarker for progression in Alzheimer disease and mild cognitive impairment. J Nucl Med. 2011; 52(8): 1218–1226.
  15. Hsu JL, Hsu WC, Chang CC, et al. Everyday cognition scales are related to cognitive function in the early stage of probable Alzheimer's disease and FDG-PET findings. Sci Rep. 2017; 7(1): 1719.
  16. Rowe CC, Ng S, Ackermann U, et al. Imaging beta-amyloid burden in aging and dementia. Neurology. 2007; 68(20): 1718–1725.
  17. Johnson KA, Gregas M, Becker JA, et al. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann Neurol. 2007; 62(3): 229–234.
  18. Chételat G, La Joie R, Villain N, et al. Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer's disease. Neuroimage Clin. 2013; 2: 356–365.
  19. Spina S, Schonhaut DR, Boeve BF, et al. Frontotemporal dementia with the V337M mutation: Tau-PET and pathology correlations. Neurology. 2017; 88(8): 758–766.
  20. Lowe VJ, Curran G, Fang P, et al. An autoradiographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathol Commun. 2016; 4(1): 58.
  21. Tripathi M, Dhawan V, Peng S, et al. Differential diagnosis of parkinsonian syndromes using F-18 fluorodeoxyglucose positron emission tomography. Neuroradiology. 2013; 55(4): 483–492.
  22. Maruyama M, Shimada H, Suhara T, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013; 79(6): 1094–1108.
  23. Shinotoh H, Shimada H, Hirano S, et al. IMAGING OF TAU PATHOLOGY IN PATIENTS WITH NON-ALZHEIMER'S DISEASE TAUOPATHIES BY [11C]PBB3-PET. Alzheimer's & Dementia. 2014; 10(4): P6–P7.
  24. Barrio JR, Small GW, Wong KP, et al. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Proc Natl Acad Sci U S A. 2015; 112(16): E2039–E2047.
  25. Barrio JR, Huang S-C, Cole G, et al. et al.. PET imaging of tangles and plaques in Alzheimer disease with a highly hydrophobic probe. J Labelled Comp Radiopharm. 1999; 42: S194–S195.
  26. Agdeppa ED, Kepe V, Shoghi-Jadid K, et al. In vivo and in vitro labeling of plaques and tangles in the brain of an Alzheimer’s disease patient: a case study. J Nucl Med. 2001; 42: 65P.
  27. Tauber C, Beaufils E, Hommet C, et al. Brain [18F]FDDNP binding and glucose metabolism in advanced elderly healthy subjects and Alzheimer's disease patients. J Alzheimers Dis. 2013; 36(2): 311–320.
  28. Barrio JR, Kepe V, Satyamurthy N, et al. Amyloid and tau imaging, neuronal losses and function in mild cognitive impairment. J Nutr Health Aging. 2008; 12(1): 61S–65S.
  29. Small GW, Kepe V, Ercoli LM, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med. 2006; 355(25): 2652–2663.
  30. Giannakopoulos P, von Gunten A, Kövari E, et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease. Neurology. 2003; 60(9): 1495–1500.
  31. Gómez-Isla T, Price JL, McKeel DW, et al. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J Neurosci. 1996; 16(14): 4491–4500.
  32. Johnson KA, Schultz A, Betensky RA, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol. 2016; 79(1): 110–119.
  33. Chien DT, Bahri S, Szardenings AK, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013; 34(2): 457–468.
  34. Choi JY, Cho H, Ahn SJ, et al. Off-Target F-AV-1451 Binding in the Basal Ganglia Correlates with Age-Related Iron Accumulation. J Nucl Med. 2018; 59(1): 117–120.
  35. Hansen AK, Knudsen K, Lillethorup TP, et al. In vivo imaging of neuromelanin in Parkinson's disease using 18F-AV-1451 PET. Brain. 2016; 139(Pt 7): 2039–2049.
  36. Lemoine L, Leuzy A, Chiotis K, et al. Tau positron emission tomography imaging in tauopathies: The added hurdle of off-target binding. Alzheimers Dement (Amst). 2018; 10: 232–236.
  37. Harada R, Okamura N, Furumoto S, et al. 18F-THK5351: A Novel PET Radiotracer for Imaging Neurofibrillary Pathology in Alzheimer Disease. J Nucl Med. 2016; 57(2): 208–214.
  38. Kang JM, Lee SY, Seo S, et al. Tau positron emission tomography using [F]THK5351 and cerebral glucose hypometabolism in Alzheimer's disease. Neurobiol Aging. 2017; 59: 210–219.
  39. Shimada H, Kitamura S, Shinotoh H, et al. Association between Aβ and tau accumulations and their influence on clinical features in aging and Alzheimer's disease spectrum brains: A [ 11 C]PBB3-PET study. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 2017; 6: 11–20.
  40. Bacskai BJ, Frosch MP, Freeman SH, et al. Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report. Arch Neurol. 2007; 64(3): 431–434.
  41. Ikonomovic MD, Klunk WE, Abrahamson EE, et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease. Brain. 2008; 131(Pt 6): 1630–1645.
  42. Engler H, Nordberg A, Blomqvist G, et al. First human study with a benzothiazole amyloid-imaging agent in Alzheimer's disease and control subjects. Neurobiol Aging. 2002; 23(1S): S429.
  43. Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol. 2004; 55(3): 306–319.
  44. Okamura N, Furumoto S, Fodero-Tavoletti MT, et al. Non-invasive assessment of Alzheimer's disease neurofibrillary pathology using 18F-THK5105 PET. Brain. 2014; 137(Pt 6): 1762–1771.
  45. Wolk DA, Grachev ID, Buckley C, et al. Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology. Arch Neurol. 2011; 68(11): 1398–1403.
  46. Yeo JM, Waddell B, Khan Z, et al. A systematic review and meta-analysis of (18)F-labeled amyloid imaging in Alzheimer's disease. Alzheimers Dement (Amst). 2015; 1(1): 5–13.
  47. Vandenberghe R, Van Laere K, Ivanoiu A, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010; 68(3): 319–329.
  48. Zwan MD, Bouwman FH, Konijnenberg E, et al. Diagnostic impact of [F]flutemetamol PET in early-onset dementia. Alzheimers Res Ther. 2017; 9(1): 2.
  49. Palmqvist S, Zetterberg H, Mattsson N, et al. Alzheimer's Disease Neuroimaging Initiative, Swedish BioFINDER Study Group. Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease. Neurology. 2015; 85(14): 1240–1249.
  50. Tomita N, Furukawa K, Okamura N, et al. Brain accumulation of amyloid β protein visualized by positron emission tomography and BF-227 in Alzheimer's disease patients with or without diabetes mellitus. Geriatr Gerontol Int. 2013; 13(1): 215–221.
  51. Rowe CC, Pejoska S, Mulligan RS, et al. Head-to-head comparison of 11C-PiB and 18F-AZD4694 (NAV4694) for β-amyloid imaging in aging and dementia. J Nucl Med. 2013; 54(6): 880–886.
  52. Mohandas E, Rajmohan V. Frontotemporal dementia: An updated overview. Indian J Psychiatry. 2009; 51 Suppl 1: S65–S69.
  53. Ishii K, Sakamoto S, Sasaki M, et al. Cerebral glucose metabolism in patients with frontotemporal dementia. J Nucl Med. 1998; 39(11): 1875–1878.
  54. Brown RKJ, Bohnen NI, Wong KaK, et al. Brain PET in suspected dementia: patterns of altered FDG metabolism. Radiographics. 2014; 34(3): 684–701.
  55. Mosconi L, Tsui WH, Herholz K, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J Nucl Med. 2008; 49(3): 390–398.
  56. Foster NL, Heidebrink JL, Clark CM, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease. Brain. 2007; 130(Pt 10): 2616–2635.
  57. Kobylecki C, Langheinrich T, Hinz R, et al. 18F-florbetapir PET in patients with frontotemporal dementia and Alzheimer disease. J Nucl Med. 2015; 56(3): 386–391.
  58. Rabinovici GD, Rosen HJ, Alkalay A, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2011; 77(23): 2034–2042.
  59. Lim SM, Katsifis A, Villemagne VL, et al. The 18F-FDG PET cingulate island sign and comparison to 123I-beta-CIT SPECT for diagnosis of dementia with Lewy bodies. J Nucl Med. 2009; 50(10): 1638–1645.
  60. Dąbrowska M, Schinwelski M, Sitek EJ, et al. The role of neuroimaging in the diagnosis of the atypical parkinsonian syndromes in clinical practice. Neurol Neurochir Pol. 2015; 49(6): 421–431.
  61. Villemagne VL, Okamura N, Pejoska S, et al. Differential diagnosis in Alzheimer's disease and dementia with Lewy bodies via VMAT2 and amyloid imaging. Neurodegener Dis. 2012; 10(1-4): 161–165.
  62. Siderowf A, Pontecorvo MJ, Shill HA, et al. PET imaging of amyloid with Florbetapir F 18 and PET imaging of dopamine degeneration with 18F-AV-133 (florbenazine) in patients with Alzheimer's disease and Lewy body disorders. BMC Neurol. 2014; 14: 79.
  63. Johnson KA, et al. Combined dopamine transporter and FDG PET IN DLB, AD, and PD. Neurobiology of Aging. 2004; 25: S86–S87.
  64. Shimada H, Hirano S, Sinotoh H, et al. Dementia with Lewy bodies can be well-differentiated from Alzheimer's disease by measurement of brain acetylcholinesterase activity-a [11C]MP4A PET study. Int J Geriatr Psychiatry. 2015; 30(11): 1105–1113.
  65. Kalaria R. Similarities between Alzheimer's disease and vascular dementia. Journal of the Neurological Sciences. 2002; 203-204: 29–34.
  66. Nobili F, Arbizu J, Bouwman F, et al. EANM-EAN Task Force for the Prescription of FDG-PET for Dementing Neurodegenerative Disorders. European Association of Nuclear Medicine and European Academy of Neurology recommendations for the use of brain F-fluorodeoxyglucose positron emission tomography in neurodegenerative cognitive impairment and dementia: Delphi consensus. Eur J Neurol. 2018; 25(10): 1201–1217.
  67. DeCarli C. Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. Lancet Neurol. 2003; 2(1): 15–21.
  68. Mosconi L, Perani D, Sorbi S, et al. MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology. 2004; 63(12): 2332–2340.
  69. Anchisi D, Borroni B, Franceschi M, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol. 2005; 62(11): 1728–1733.
  70. Morbelli S, Piccardo A, Villavecchia G, et al. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study. Eur J Nucl Med Mol Imaging. 2010; 37(1): 36–45.
  71. Small GW, Mazziotta JC, Collins MT, et al. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA. 1995; 273(12): 942–947.
  72. Reiman EM, Caselli RJ, Yun LS, et al. Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med. 1996; 334(12): 752–758.
  73. Yuan Y, Gu ZX, Wei WS. Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. AJNR Am J Neuroradiol. 2009; 30(2): 404–410.
  74. Kemppainen NM, Scheinin NM, Koivunen J, et al. Five-year follow-up of 11C-PIB uptake in Alzheimer's disease and MCI. Eur J Nucl Med Mol Imaging. 2014; 41(2): 283–289.
  75. Forsberg A, Engler H, Almkvist O, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging. 2008; 29(10): 1456–1465.
  76. Koivunen J, Scheinin N, Virta JR, et al. Amyloid PET imaging in patients with mild cognitive impairment: a 2-year follow-up study. Neurology. 2011; 76(12): 1085–1090.
  77. Tolboom N, Yaqub M, van der Flier WM, et al. Detection of Alzheimer pathology in vivo using both 11C-PIB and 18F-FDDNP PET. J Nucl Med. 2009; 50(2): 191–197.
  78. Grimmer T, Wutz C, Alexopoulos P, et al. Visual Versus Fully Automated Analyses of 18F-FDG and Amyloid PET for Prediction of Dementia Due to Alzheimer Disease in Mild Cognitive Impairment. J Nucl Med. 2016; 57(2): 204–207.
  79. Ng S, Villemagne VL, Berlangieri S, et al. Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer's disease. J Nucl Med. 2007; 48(4): 547–552.
  80. Prestia A, Caroli A, van der Flier WM, et al. Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease. Neurology. 2013; 80(11): 1048–1056.
  81. Scheinin NM, Aalto S, Koikkalainen J, et al. Follow-up of [11C]PIB uptake and brain volume in patients with Alzheimer disease and controls. Neurology. 2009; 73(15): 1186–1192.
  82. Stefanova E, Wall A, Almkvist O, et al. Longitudinal PET evaluation of cerebral glucose metabolism in rivastigmine treated patients with mild Alzheimer's disease. J Neural Transm (Vienna). 2006; 113(2): 205–218.
  83. Tune L, Tiseo PJ, Ieni J, et al. Donepezil HCl (E2020) maintains functional brain activity in patients with Alzheimer disease: results of a 24-week, double-blind, placebo-controlled study. Am J Geriatr Psychiatry. 2003; 11(2): 169–177.
  84. Slawek J. Parkinson’s disease: how to properly diagnose and efectively and safely treat? (Article in Polish). Forum Medycyny Rodzinnej. 2014; 8(6): 281–291.
  85. Antony PMA, Diederich NJ, Krüger R, et al. The hallmarks of Parkinson's disease. FEBS J. 2013; 280(23): 5981–5993.
  86. Edison P, Ahmed I, Fan Z, et al. Microglia, amyloid, and glucose metabolism in Parkinson's disease with and without dementia. Neuropsychopharmacology. 2013; 38(6): 938–949.
  87. Bohnen NI, Müller ML, Kotagal V, et al. Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson's disease. Brain. 2010; 133(Pt 6): 1747–1754.
  88. Akdemir ÜÖ, Tokçaer AB, Karakuş A, et al. Brain 18F-FDG PET imaging in the differential diagnosis of parkinsonism. Clin Nucl Med. 2014; 39(3): e220–e226.
  89. Eckert T, Barnes A, Dhawan V, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage. 2005; 26(3): 912–921.
  90. Wu P, Wang J, Peng S, et al. Metabolic brain network in the Chinese patients with Parkinson's disease based on 18F-FDG PET imaging. Parkinsonism Relat Disord. 2013; 19(6): 622–627.
  91. Pal PK, Wszolek ZK, Uitti R, et al. Positron emission tomography of dopamine pathways in familial Parkinsonian syndromes. Parkinsonism Relat Disord. 2001; 8(1): 51–56.
  92. Brooks DJ, Ibanez V, Sawle GV, et al. Differing patterns of striatal 18F-dopa uptake in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol. 1990; 28(4): 547–555.
  93. Gao L, Chen H, Li X, et al. The diagnostic value of minor salivary gland biopsy in clinically diagnosed patients with Parkinson's disease: comparison with DAT PET scans. Neurol Sci. 2015; 36(9): 1575–1580.
  94. Liu SY, Wu JJ, Zhao J, et al. Onset-related subtypes of Parkinson's disease differ in the patterns of striatal dopaminergic dysfunction: A positron emission tomography study. Parkinsonism Relat Disord. 2015; 21(12): 1448–1453.
  95. Chung M, Park YS, Kim JiS, et al. Correlating Parkinson's disease motor symptoms with three-dimensional [(18)F]FP-CIT PET. Jpn J Radiol. 2015; 33(10): 609–618.
  96. Hsiao IT, Weng YH, Hsieh CJ, et al. Correlation of Parkinson disease severity and 18F-DTBZ positron emission tomography. JAMA Neurol. 2014; 71(6): 758–766.
  97. Rinne JO, Laihinen A, Rinne UK, et al. PET study on striatal dopamine D2 receptor changes during the progression of early Parkinson's disease. Mov Disord. 1993; 8(2): 134–138.
  98. Stark AJ, Smith CT, Petersen KJ, et al. [F]fallypride characterization of striatal and extrastriatal D receptors in Parkinson's disease. Neuroimage Clin. 2018; 18: 433–442.
  99. Garcia-Garcia D, Clavero P, Gasca Salas C, et al. Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson's disease. Eur J Nucl Med Mol Imaging. 2012; 39(11): 1767–1777.
  100. Hosokai Y, Nishio Y, Hirayama K, et al. Distinct patterns of regional cerebral glucose metabolism in Parkinson's disease with and without mild cognitive impairment. Mov Disord. 2009; 24(6): 854–862.
  101. Huang C, Mattis P, Perrine K, et al. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology. 2008; 70(16 Pt 2): 1470–1477.
  102. Oh YS, Kim JS, Hwang EJ, et al. Striatal dopamine uptake and olfactory dysfunction in patients with early Parkinson's disease. Parkinsonism Relat Disord. 2018; 56: 47–51.
  103. Bohnen NI, Gedela S, Herath P, et al. Selective hyposmia in Parkinson disease: association with hippocampal dopamine activity. Neurosci Lett. 2008; 447(1): 12–16.
  104. Hughes AJ, Daniel SE, Ben-Shlomo Y, et al. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain. 2002; 125(Pt 4): 861–870.
  105. Eggers C, Hilker R, Burghaus L, et al. High resolution positron emission tomography demonstrates basal ganglia dysfunction in early Parkinson's disease. J Neurol Sci. 2009; 276(1-2): 27–30.
  106. Schreckenberger M, Hägele S, Siessmeier T, et al. The dopamine D2 receptor ligand 18F-desmethoxyfallypride: an appropriate fluorinated PET tracer for the differential diagnosis of parkinsonism. Eur J Nucl Med Mol Imaging. 2004; 31(8): 1128–1135.
  107. la Fougère C, Pöpperl G, Levin J, et al. The value of the dopamine D2/3 receptor ligand 18F-desmethoxyfallypride for the differentiation of idiopathic and nonidiopathic parkinsonian syndromes. J Nucl Med. 2010; 51(4): 581–587.
  108. Zhao P, Zhang B, Gao S. 18[F]-FDG PET study on the Idiopathic Parkinson's disease from several parkinsonian-plus syndromes. Parkinsonism & Related Disorders. 2012; 18: S60–S62.
  109. Taniwaki T, Nakagawa M, Yamada T, et al. Cerebral metabolic changes in early multiple system atrophy: a PET study. J Neurol Sci. 2002; 200(1-2): 79–84.
  110. Bu LL, Liu FT, Jiang CF, et al. Patterns of dopamine transporter imaging in subtypes of multiple system atrophy. Acta Neurol Scand. 2018; 138(2): 170–176.
  111. Kepe V, Bordelon Y, Boxer A, et al. PET imaging of neuropathology in tauopathies: progressive supranuclear palsy. J Alzheimers Dis. 2013; 36(1): 145–153.
  112. Passamonti L, Vázquez Rodríguez P, Hong YT, et al. 18F-AV-1451 positron emission tomography in Alzheimer's disease and progressive supranuclear palsy. Brain. 2017; 140(3): 781–791.
  113. Whitwell JL, Lowe VJ, Tosakulwong N, et al. [ F]AV-1451 tau positron emission tomography in progressive supranuclear palsy. Mov Disord. 2017; 32(1): 124–133.
  114. Valli M, Strafella AP. New advances in tau imaging in parkinsonism. Int Rev Psychiatry. 2017; 29(6): 628–635.
  115. Grijalvo-Perez AM, Litvan I. Corticobasal degeneration. Semin Neurol. 2014; 34(2): 160–173.
  116. Niethammer M, Tang CC, Feigin A, et al. A disease-specific metabolic brain network associated with corticobasal degeneration. Brain. 2014; 137(Pt 11): 3036–3046.
  117. Laureys S, Salmon E, Garraux G, et al. Fluorodopa uptake and glucose metabolism in early stages of corticobasal degeneration. J Neurol. 1999; 246(12): 1151–1158.
  118. Smith R, Schöll M, Widner H, et al. In vivo retention of F-AV-1451 in corticobasal syndrome. Neurology. 2017; 89(8): 845–853.
  119. Kikuchi A, Okamura N, Hasegawa T, et al. In vivo visualization of tau deposits in corticobasal syndrome by 18F-THK5351 PET. Neurology. 2016; 87(22): 2309–2316.
  120. Hellwig S, Frings L, Amtage F, et al. 18F-FDG PET Is an Early Predictor of Overall Survival in Suspected Atypical Parkinsonism. J Nucl Med. 2015; 56(10): 1541–1546.
  121. Hellwig S, Amtage F, Kreft A, et al. [¹⁸F]FDG-PET is superior to [¹²³I]IBZM-SPECT for the differential diagnosis of parkinsonism. Neurology. 2012; 79(13): 1314–1322.
  122. Fuente‐Fernández RD, Lu J, Sossi V, et al. Biochemical variations in the synaptic level of dopamine precede motor fluctuations in Parkinson's disease: PET evidence of increased dopamine turnover. Annals of Neurology. 2001; 49(3): 298–303.
  123. Chung SuJ, Lee Y, Oh JS, et al. Putaminal dopamine depletion in de novo Parkinson's disease predicts future development of wearing-off. Parkinsonism Relat Disord. 2018; 53: 96–100.
  124. Fiszer U. The Current Status of Levodopa Treatment in Parkinson’s disease. (Article in Polish). Postępy Nauk Medycznych, t. Postępy Nauk Medycznych. 2012; XXV(1): 2012.
  125. Yoo HS, Chung SJ, Chung SuJ, et al. Presynaptic dopamine depletion determines the timing of levodopa-induced dyskinesia onset in Parkinson's disease. Eur J Nucl Med Mol Imaging. 2018; 45(3): 423–431.
  126. Whone AL, Watts RL, Stoessl AJ, et al. REAL-PET Study Group. Slower progression of Parkinson's disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol. 2003; 54(1): 93–101.
  127. Trost M, Su PC, Barnes A, et al. Evolving metabolic changes during the first postoperative year after subthalamotomy. J Neurosurg. 2003; 99(5): 872–878.
  128. Sauleau P, Le Jeune F, Drapier S, et al. Weight gain following subthalamic nucleus deep brain stimulation: a PET study. Mov Disord. 2014; 29(14): 1781–1787.
  129. Axelsen TM, Woldbye DPD. Gene Therapy for Parkinson's Disease, An Update. J Parkinsons Dis. 2018; 8(2): 195–215.
  130. Yagi S, Yoshikawa E, Futatsubashi M, et al. Progression from unilateral to bilateral parkinsonism in early Parkinson disease: implication of mesocortical dopamine dysfunction by PET. J Nucl Med. 2010; 51(8): 1250–1257.
  131. Heller J, Brcina N, Dogan I, et al. Brain imaging findings in idiopathic REM sleep behavior disorder (RBD) - A systematic review on potential biomarkers for neurodegeneration. Sleep Med Rev. 2017; 34: 23–33.
  132. Holtbernd F, Gagnon JF, Postuma RB, et al. Abnormal metabolic network activity in REM sleep behavior disorder. Neurology. 2014; 82(7): 620–627.
  133. Arnaldi D, Morbelli S, Brugnolo A, et al. Functional neuroimaging and clinical features of drug naive patients with de novo Parkinson's disease and probable RBD. Parkinsonism Relat Disord. 2016; 29: 47–53.
  134. Arnaldi D, De Carli F, Picco A, et al. Nigro-caudate dopaminergic deafferentation: a marker of REM sleep behavior disorder? Neurobiol Aging. 2015; 36(12): 3300–3305.
  135. Saberi S, Stauffer JE, Schulte DJ, et al. Neuropathology of Amyotrophic Lateral Sclerosis and Its Variants. Neurol Clin. 2015; 33(4): 855–876.
  136. Cistaro A, Valentini MC, Chiò A, et al. Brain hypermetabolism in amyotrophic lateral sclerosis: a FDG PET study in ALS of spinal and bulbar onset. Eur J Nucl Med Mol Imaging. 2012; 39(2): 251–259.
  137. Pagani M, Chiò A, Valentini MC, et al. Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology. 2014; 83(12): 1067–1074.
  138. Matías-Guiu JA, Pytel V, Cabrera-Martín MN, et al. Amyloid- and FDG-PET imaging in amyotrophic lateral sclerosis. Eur J Nucl Med Mol Imaging. 2016; 43(11): 2050–2060.
  139. Lloyd CM, Richardson MP, Brooks DJ, et al. Extramotor involvement in ALS: PET studies with the GABA(A) ligand [(11)C]flumazenil. Brain. 2000; 123 ( Pt 11): 2289–2296.
  140. Turner MR, Hammers A, Al-Chalabi A, et al. Distinct cerebral lesions in sporadic and 'D90A' SOD1 ALS: studies with [11C]flumazenil PET. Brain. 2005; 128(Pt 6): 1323–1329.
  141. Van Laere K, Vanhee A, Verschueren J, et al. Value of 18fluorodeoxyglucose-positron-emission tomography in amyotrophic lateral sclerosis: a prospective study. JAMA Neurol. 2014; 71(5): 553–561.
  142. Turner MR, Cagnin A, Turkheimer FE, et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis. 2004; 15(3): 601–609.
  143. Zürcher NR, Loggia ML, Lawson R, et al. Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28. Neuroimage Clin. 2015; 7: 409–414.
  144. Johansson A, Engler H, Blomquist G, et al. Evidence for astrocytosis in ALS demonstrated by [11C](L)-deprenyl-D2 PET. J Neurol Sci. 2007; 255(1-2): 17–22.
  145. Canosa A, Pagani M, Cistaro A, et al. 18F-FDG-PET correlates of cognitive impairment in ALS. Neurology. 2016; 86(1): 44–49.
  146. Jeong Y, Park KC, Cho SS, et al. Pattern of glucose hypometabolism in frontotemporal dementia with motor neuron disease. Neurology. 2005; 64(4): 734–736.
  147. Turner MR, Hammers A, Al-Chalabi A, et al. Cortical involvement in four cases of primary lateral sclerosis using [(11)C]-flumazenil PET. J Neurol. 2007; 254(8): 1033–1036.
  148. Ikawa M, Okazawa H, Tsujikawa T, et al. Increased oxidative stress is related to disease severity in the ALS motor cortex: A PET study. Neurology. 2015; 84(20): 2033–2039.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk, Poland
tel.:+48 58 320 94 94, fax:+48 58 320 94 60, e-mail: