Tom 7, Nr 3 (2021)
Wytyczne / stanowisko ekspertów
Pobierz cytowanie

Wytyczne PTL/KLRWP/PTK/PTDL/PTD/PTNT diagnostyki i leczenia zaburzeń lipidowych w Polsce 2021

Maciej Banach123, Paweł Burchardt45, Krzysztof Chlebus6, Piotr Dobrowolski7, Dariusz Dudek8, Krzysztof Dyrbuś9, Mariusz Gąsior9, Piotr Jankowski1011, Jacek Jóźwiak12, Longina Kłosiewicz-Latoszek13, Irina Kowalska14, Maciej Małecki15, Aleksander Prejbisz7, Michał Rakowski16, Jacek Rysz17, Bogdan Solnica18, Dariusz Sitkiewicz19, Grażyna Sygitowicz19, Grażyna Sypniewska20, Tomasz Tomasik21, Adam Windak21, Dorota Zozulińska-Ziółkiewicz22, Barbara Cybulska13
Nadciśnienie Tętnicze w Praktyce 2021;7(3):113-122.
Afiliacje
  1. Zakład Kardiologii Prewencyjnej i Lipidologii, Uniwersytet Medyczny w Łodzi, Łódź
  2. Ośrodek Badań Sercowo-Naczyniowych, Uniwersytet Zielonogórski, Zielona Góra
  3. Klinika Kardiologii i Wad Wrodzonych Dorosłych, Instytut Centrum Zdrowia Matki Polki (ICZMP), Łódź
  4. Klinika Hipertensjologii, Angiologii i Chorób Wewnętrznych, Pracownia Biologii Zaburzeń Lipidowych, Uniwersytet Medyczny im. K. Marcinkowskiego, Poznań
  5. Oddział Kardiologiczny, Pracownia Serca i Naczyń, Szpital im. J. Strusia, Poznań
  6. I Katedra i Klinika Kardiologii, Gdański Uniwersytet Medyczny, Gdańsk
  7. Klinika Nadciśnienia Tętniczego, Narodowy Instytut Kardiologii, Warszawa
  8. Instytut Kardiologii, Collegium Medicum Uniwersytetu Jagiellońskiego, Kraków
  9. III Katedra I Oddział Kliniczny Kardiologii, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
  10. Klinika Chorób Wewnętrznych, Geriatrii i Kardiologii, Centrum Medyczne Kształcenia Podyplomowego, Warszawa
  11. Klinika Kardiologii i Nadciśnienia Tętniczego, Instytut Kardiologii, Collegium Medicum Uniwersytetu Jagiellońskiego, Kraków
  12. Zakład Medycyny Rodzinnej i Zdrowia Publicznego, Instytut Nauk Medycznych, Wydział Lekarski, Uniwersytet Opolski, Opole
  13. Narodowy Instytut Zdrowia Publicznego PZH — Państwowy Instytut Badawczy, Warszawa
  14. Klinika Chorób Wewnętrznych i Chorób Metabolicznych, Uniwersytet Medyczny w Białymstoku, Białystok
  15. Katedra i Klinika Chorób Metabolicznych, Collegium Medicum Uniwersytetu Jagiellońskiego, Kraków
  16. Katedra Biofizyki Molekularnej, Instytut Biofizyki, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Łódź
  17. Katedra Nefrologii, Nadciśnienia Tętniczego i Medycyny Rodzinnej, Uniwersytet Medyczny w Łodzi, Łódź
  18. Katedra Biochemii Klinicznej, Collegium Medicum Uniwersytetu Jagiellońskiego, Kraków
  19. Zakład Chemii Klinicznej i Diagnostyki Laboratoryjnej, Warszawski Uniwersytet Medyczny, Warszawa
  20. Katedra Diagnostyki Laboratoryjnej, Collegium Medicum im. L Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika, Toruń
  21. Katedra Medycyny Rodzinnej, Collegium Medicum Uniwersytetu Jagiellońskiego, Kraków
  22. Katedra i Klinika Chorób Wewnętrznych i Diabetologii, Uniwersytet Medyczny im. K. Marcinkowskiego w Poznaniu, Poznań

dostęp płatny

Tom 7, Nr 3 (2021)
Zalecenia

Streszczenie

Brak

Streszczenie

Brak
Pobierz cytowanie
Informacje o artykule
Tytuł

Wytyczne PTL/KLRWP/PTK/PTDL/PTD/PTNT diagnostyki i leczenia zaburzeń lipidowych w Polsce 2021

Czasopismo

Nadciśnienie Tętnicze w Praktyce

Numer

Tom 7, Nr 3 (2021)

Typ artykułu

Wytyczne / stanowisko ekspertów

Strony

113-122

Rekord bibliograficzny

Nadciśnienie Tętnicze w Praktyce 2021;7(3):113-122.

Autorzy

Maciej Banach
Paweł Burchardt
Krzysztof Chlebus
Piotr Dobrowolski
Dariusz Dudek
Krzysztof Dyrbuś
Mariusz Gąsior
Piotr Jankowski
Jacek Jóźwiak
Longina Kłosiewicz-Latoszek
Irina Kowalska
Maciej Małecki
Aleksander Prejbisz
Michał Rakowski
Jacek Rysz
Bogdan Solnica
Dariusz Sitkiewicz
Grażyna Sygitowicz
Grażyna Sypniewska
Tomasz Tomasik
Adam Windak
Dorota Zozulińska-Ziółkiewicz
Barbara Cybulska

Referencje (436)
  1. Soran H, Adam S, Mohammad JB, et al. Hypercholesterolaemia — practical information for non-specialists. Arch Med Sci. 2018; 14(1): 1–21.
  2. Penson PE, Pirro M, Banach M. LDL-C: lower is better for longer-even at low risk. BMC Med. 2020; 18(1): 320.
  3. Ling JZJ, Montvida O, Khunti K, et al. Therapeutic inertia in the management of dyslipidaemia and hypertension in incident type 2 diabetes and the resulting risk factor burden: Real-world evidence from primary care. Diabetes Obes Metab. 2021; 23(7): 1518–1531.
  4. Zdrojewski T, Solnica B, Cybulska B, et al. Prevalence of lipid abnormalities in Poland. The NATPOL 2011 survey. Kardiol Pol. 2016; 74(3): 213–223.
  5. Dyrbuś K, Gąsior M, Desperak P, et al. The prevalence and management of familial hypercholesterolemia in patients with acute coronary syndrome in the Polish tertiary centre: Results from the TERCET registry with 19,781 individuals. Atherosclerosis. 2019; 288: 33–41.
  6. Cybulska B, Kłosiewicz-Latoszek L, Penson PE, et al. International Lipid Expert Panel (ILEP). How much should LDL cholesterol be lowered in secondary prevention? Clinical efficacy and safety in the era of PCSK9 inhibitors. Prog Cardiovasc Dis. 2021; 67: 65–74.
  7. Banach M, Penson PE. Statins and LDL-C in Secondary Prevention-So Much Progress, So Far to Go. JAMA Netw Open. 2020; 3(11): e2025675.
  8. Banach M, Jankowski P, Jóźwiak J, et al. PoLA/CFPiP/PCS Guidelines for the Management of Dyslipidaemias for Family Physicians 2016. Arch Med Sci. 2017; 13(1): 1–45.
  9. Mach F, Baigent C, Catapano AL, et al. ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020; 41(1): 111–188.
  10. Jóźwiak JJ, Studziński K, Tomasik T, et al. LIPIDOGRAM2015 Investigators. The prevalence of cardiovascular risk factors and cardiovascular disease among primary care patients in Poland: results from the LIPIDOGRAM2015 study. Atheroscler Suppl. 2020; 42: e15–e24.
  11. NCD Risk Factor Collaboration (NCD-RisC). National trends in total cholesterol obscure heterogeneous changes in HDL and non-HDL cholesterol and total-to-HDL cholesterol ratio: a pooled analysis of 458 population-based studies in Asian and Western countries. Int J Epidemiol. 2020; 49(1): 173–192.
  12. NCD Risk Factor Collaboration (NCD-RisC). Repositioning of the global epicentre of non-optimal cholesterol. Nature. 2020; 582(7810): 73–77.
  13. Jóźwiak J. Dyslipidemie. In: Windak A, Mastalerz-Migas A, Chlabicz S. ed. Medycyna rodzinna. Podręcznik dla lekarzy i studentów. Termedia, Poznan 2015.
  14. Rywik S, Broda G, Piotrowski W, et al. Epidemiologia chorób układu krążenia - Program Pol-MONICA Warszawa. Kardiol Pol. 1996; 44(Supl. 2): 7–35.
  15. Tendera M, Kozakiewicz K, Bartnik M, et al. Występowanie głównych czynników ryzyka choroby niedokrwiennej serca w grupie 41 927 osób objętych akcją prewencji pierwotnej w Polsce południowej (Southeren Poland Epidemiological Survey — SPES). Wiad Lek. 2001; 54(5–6): 293–303.
  16. Zdrojewski T, Bandosz P, Szpakowski P, et al. Rozpowszechnienie głównych czynników ryzyka chorób układu sercowo-naczyniowego w Polsce. Wyniki badania NATPOL PLUS. Kardiol Pol. 2004; 61(Supl. 4): 1–26.
  17. Pająk A, Wiercińska E, Polakowska M, et al. Rozpowszechnienie dyslipidemii u mężczyzn i kobiet w wieku 20-74 lat w Polsce. Wyniki programu WOBASZ. Kardiol Pol. 2005; 63(Supl. 4): 620–626.
  18. Jóźwiak J, Mastej M, Lukas W, et al. LIPIDOGRAM2003 - Ocena i porównanie parametrów pełnego lipidogramu i wskaźnika masy ciała BMI w zależności od płci i wieku w populacji pacjentów Polski południowej i zachodniej. Część II: częstość występowania zaburzeń lipidowych w zależności od płci i BMI. Probl Med Rodz. 2005; 7(2): 33–39.
  19. Jóźwiak J, Mastej M, Lukas W, et al. Czy problem zaburzeń lipidowych w równym stopniu dotyczy różnych regionów Polski? Kardiol Pol. 2006; 64(Supl. 2): 137–145.
  20. Konduracka E, Jóźwiak J, Mastej M, et al. Prevalence of dislipidemia and general ineffectiveness of its treatment In both primary and secondary prevention of coronary heart disease within family medicine framework - results of LIPIDOGRAM 2005 a nationwide epidemiological study. Dislipidemia in Poland — ineffective treatment. Przegl Lek. 2008; 65(12): 834–837.
  21. Pająk A, Szafraniec K, Polak M, et al. WOBASZ Investigators. Changes in the prevalence, treatment, and control of hypercholesterolemia and other dyslipidemias over 10 years in Poland: the WOBASZ study. Pol Arch Med Wewn. 2016; 126(9): 642–652.
  22. Kaess BM, Jozwiak J, Mastej M, et al. Association between anthropometric obesity measures and coronary artery disease: a cross-sectional survey of 16,657 subjects from 444 Polish cities. Heart. 2010; 96(2): 131–135.
  23. Tomasik T, Jozwiak J, Windak A, et al. Prevention of coronary heart disease in primary medical care in Poland: results from the LIPIDOGRAM study. Eur J Cardiovasc Prev Rehabil. 2011; 18(2): 287–296.
  24. Kaess BM, Jóźwiak J, Nelson CP, et al. The relation of rapid changes in obesity measures to lipid profile - insights from a nationwide metabolic health survey in 444 Polish cities. PLoS One. 2014; 9(1): e86837.
  25. Jankowski P, Czarnecka D, Łukaszewska A, et al. Factors related to the effectiveness of hypercholesterolemia treatment following hospitalization for coronary artery disease. Pol Arch Med Wewn. 2016; 126(6): 388–394.
  26. Jankowski P, Czarnecka D, Badacz L, et al. Practice setting and secondary prevention of coronary artery disease. Arch Med Sci. 2018; 14(5): 979–987.
  27. Jóźwiak J, Kasperczyk S, Tomasik T, et al. Design and rationale of a nationwide screening analysis from the LIPIDOGRAM2015 and LIPIDOGEN2015 studies. Arch Med Sci. 2020.
  28. Harrison SL, Lane DA, Banach M, et al. LIPIDOGRAM2015 Investigators. Lipid levels, atrial fibrillation and the impact of age: Results from the LIPIDOGRAM2015 study. Atherosclerosis. 2020; 312: 16–22.
  29. Gańczak M, Miazgowski T, Kożybska M, et al. Changes in disease burden in Poland between 1990-2017 in comparison with other Central European countries: A systematic analysis for the Global Burden of Disease Study 2017. PLoS One. 2020; 15(3): e0226766.
  30. Ray KK, Molemans B, Schoonen WM, et al. DA VINCI study. EU-Wide Cross-Sectional Observational Study of Lipid-Modifying Therapy Use in Secondary and Primary Care: the DA VINCI study. Eur J Prev Cardiol. 2020 [Epub ahead of print].
  31. Vrablik M, Seifert B, Parkhomenko A, et al. Are risk-based LDL-c goals achieved in primary and secondary care in central and Eastern Europe? comparison with other Europe regions from the DA VINCI observational study. Atherosclerosis. 2021; 331: e23.
  32. Podgórski M, Szatko K, Stańczyk M, et al. "Apple does not fall far from the tree" — subclinical atherosclerosis in children with familial hypercholesterolemia. Lipids Health Dis. 2020; 19(1): 169.
  33. Banach M, Wojtowicz E, Mastej M, et al. P5304Prevalence of familial hypercholesterolemia in Poland in the LIPIDOGRAM2004 and 2006 population-based surveys. Eur Heart J. 2017; 38(suppl_1).
  34. Dyrbuś K, Gąsior M, Desperak P, et al. The prevalence and management of familial hypercholesterolemia in patients with acute coronary syndrome in the Polish tertiary centre: Results from the TERCET registry with 19,781 individuals. Atherosclerosis. 2019; 288: 33–41.
  35. Langlois MR, Chapman MJ, Cobbaert C, et al. European Atherosclerosis Society (EAS) and the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Joint Consensus Initiative. Quantifying Atherogenic Lipoproteins: Current and Future Challenges in the Era of Personalized Medicine and Very Low Concentrations of LDL Cholesterol. A Consensus Statement from EAS and EFLM. Clin Chem. 2018; 64(7): 1006–1033.
  36. Sathiyakumar V, Pallazola VA, Park J, et al. Modern prevalence of the Fredrickson-Levy-Lees dyslipidemias: findings from the Very Large Database of Lipids and National Health and Nutrition Examination Survey. Arch Med Sci. 2020; 16(6): 1279–1287.
  37. Borén J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2020; 41(24): 2313–2330.
  38. Carr SS, Hooper AJ, Sullivan DR, et al. Non-HDL-cholesterol and apolipoprotein B compared with LDL-cholesterol in atherosclerotic cardiovascular disease risk assessment. Pathology. 2019; 51(2): 148–154.
  39. Enger SC, Hjermann I, Foss OP, et al. High density lipoprotein cholesterol and myocardial infarction or sudden coronary death: a prospective case-control study in middle-aged men of the Oslo study. Artery. 1979; 5(2): 170–181.
  40. Gordon DJ, Probstfield JL, Garrison RJ, et al. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 1989; 79(1): 8–15.
  41. Otocka-Kmiecik A, Mikhailidis DP, Nicholls SJ, et al. Dysfunctional HDL: a novel important diagnostic and therapeutic target in cardiovascular disease? Prog Lipid Res. 2012; 51(4): 314–324.
  42. Barylski M, Toth PP, Nikolic D, et al. Emerging therapies for raising high-density lipoprotein cholesterol (HDL-C) and augmenting HDL particle functionality. Best Pract Res Clin Endocrinol Metab. 2014; 28(3): 453–461.
  43. Stahel P, Xiao C, Hegele RA, et al. The Atherogenic Dyslipidemia Complex and Novel Approaches to Cardiovascular Disease Prevention in Diabetes. Can J Cardiol. 2018; 34(5): 595–604.
  44. Iqbal J, Al Qarni A, Hawwari A, et al. Metabolic Syndrome, Dyslipidemia and Regulation of Lipoprotein Metabolism. Curr Diabetes Rev. 2018; 14(5): 427–433.
  45. Cybulska B, Kłosiewicz-Latoszek L, Penson PE, et al. What do we know about the role of lipoprotein(a) in atherogenesis 57 years after its discovery? Prog Cardiovasc Dis. 2020; 63(3): 219–227.
  46. Kamstrup PR. Lipoprotein(a) and ischemic heart disease--a causal association? A review. Atherosclerosis. 2010; 211(1): 15–23.
  47. Banach M. Lipoprotein (a)-We Know So Much Yet Still Have Much to Learn …. J Am Heart Assoc. 2016; 5(4).
  48. Zdrojewski T, Jankowski P, Bandosz P, et al. [A new version of cardiovascular risk assessment system and risk charts calibrated for Polish population]. Kardiol Pol. 2015; 73(10): 958–961.
  49. Banach M, Penson PE. What have we learned about lipids and cardiovascular risk from PCSK9 inhibitor outcome trials: ODYSSEY and FOURIER? Cardiovasc Res. 2019; 115(3): e26–e31.
  50. Solnica B, Sygitowicz G, Sitkiewicz D, et al. 2020 Guidelines of the Polish Society of Laboratory Diagnostics (PSLD) and the Polish Lipid Association (PoLA) on laboratory diagnostics of lipid metabolism disorders. Arch Med Sci. 2020; 16(2): 237–252.
  51. Lambert JE, Parks EJ. Postprandial metabolism of meal triglyceride in humans. Biochim Biophys Acta. 2012; 1821(5): 721–726.
  52. Borén J, Matikainen N, Adiels M, et al. Postprandial hypertriglyceridemia as a coronary risk factor. Clin Chim Acta. 2014; 431: 131–142.
  53. Nordestgaard BG, Langsted A, Mora S, et al. European Atherosclerosis Society (EAS) and the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Joint Consensus Initiative. Fasting Is Not Routinely Required for Determination of a Lipid Profile: Clinical and Laboratory Implications Including Flagging at Desirable Concentration Cutpoints-A Joint Consensus Statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Clin Chem. 2016; 62(7): 930–946.
  54. Maierean SM, Mikhailidis DP, Toth PP, et al. The potential role of statins in preeclampsia and dyslipidemia during gestation: a narrative review. Expert Opin Investig Drugs. 2018; 27(5): 427–435.
  55. Bucolo G, David H. Quantitative determination of serum triglycerides by the use of enzymes. Clin Chem. 1973; 19(5): 476–482.
  56. Myasoedova E, Crowson CS, Kremers HM, et al. Lipid paradox in rheumatoid arthritis: the impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease. Ann Rheum Dis. 2011; 70(3): 482–487.
  57. Colantonio LD, Bittner V, Reynolds K, et al. Association of Serum Lipids and Coronary Heart Disease in Contemporary Observational Studies. Circulation. 2016; 133(3): 256–264.
  58. Gibbons GF, Islam K, Pease RJ. Mobilisation of triacylglycerol stores. Biochim Biophys Acta. 2000; 1483(1): 37–57.
  59. Ramírez M, Amate L, Gil A. Absorption and distribution of dietary fatty acids from different sources. Early Hum Dev. 2001; 65 Suppl: S95–S9S101.
  60. Nordestgaard BG. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights From Epidemiology, Genetics, and Biology. Circ Res. 2016; 118(4): 547–563.
  61. Quispe R, Hendrani AD, Baradaran-Noveiry B, et al. Characterization of lipoprotein profiles in patients with hypertriglyceridemic Fredrickson-Levy and Lees dyslipidemia phenotypes: the Very Large Database of Lipids Studies 6 and 7. Arch Med Sci. 2019; 15(5): 1195–1202.
  62. Quispe R, Manalac RJ, Faridi KF, et al. Relationship of the triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio to the remainder of the lipid profile: The Very Large Database of Lipids-4 (VLDL-4) study. Atherosclerosis. 2015; 242(1): 243–250.
  63. Catapano A, Tokgözoğlu L, Silva AM, et al. Atherogenic markers in predicting cardiovascular risk and targeting residual cardiovascular risk. Atherosclerosis Suppl. 2019; 39: 100001.
  64. Siedel J, Schmuck R, Staepels J, et al. Long term stable, liquid ready-to-use mono reagent for the enzymatic assay of serum or plasma triglycerides (GPO-PAP-method). AACC Meeting Abstract 34. Clin Chem. 1993; 39: 1127.
  65. Elshourbagy N, Meyers H, Abdel-Meguid S. Cholesterol: The Good, the Bad, and the Ugly — Therapeutic Targets for the Treatment of Dyslipidemia. Med Princ Pract. 2013; 23(2): 99–111.
  66. Rynkiewicz A, Cybulska B, Banach M, et al. Polish Lipid Expert Forum. [Management of familial heterozygous hypercholesterolaemia. Position paper of the Polish Lipid Expert Forum]. Kardiol Pol. 2013; 71(1): 107–111.
  67. Allain CC, Poon LS, Chan CS, et al. Enzymatic determination of total serum cholesterol. Clin Chem. 1974; 20(4): 470–475.
  68. Camont L, Chapman MJ, Kontush A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol Med. 2011; 17(10): 594–603.
  69. Soran H, Schofield JD, Durrington PN. Antioxidant properties of HDL. Front Pharmacol. 2015; 6: 222.
  70. Lenten BV. The Role of High-Density Lipoproteins in Oxidation and Inflammation. Trends Cardiovasc Med. 2001; 11(3–4): 155–161.
  71. Otocka-Kmiecik A, Mikhailidis DP, Nicholls SJ, et al. Dysfunctional HDL: a novel important diagnostic and therapeutic target in cardiovascular disease? Prog Lipid Res. 2012; 51(4): 314–324.
  72. Ganjali S, Watts G, Banach M, et al. The Yin and Yang of High-density Lipoprotein and Atherosclerotic Cardiovascular Disease: Focusing on Functionality and Cholesterol Efflux to Reframe the HDL Hypothesis. Curr Med Chem. 2021; 28.
  73. Ganjali S, Momtazi AA, Banach M, et al. HDL abnormalities in familial hypercholesterolemia: Focus on biological functions. Prog Lipid Res. 2017; 67: 16–26.
  74. Movva R, Rader DJ. Laboratory assessment of HDL heterogeneity and function. Clin Chem. 2008; 54(5): 788–800.
  75. Hafiane A, Genest J. High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk. BBA Clin. 2015; 3: 175–188.
  76. Rizzo M, Otvos J, Nikolic D, et al. Subfractions and subpopulations of HDL: an update. Curr Med Chem. 2014; 21(25): 2881–2891.
  77. Barylski M, Toth PP, Nikolic D, et al. Emerging therapies for raising high-density lipoprotein cholesterol (HDL-C) and augmenting HDL particle functionality. Best Pract Res Clin Endocrinol Metab. 2014; 28(3): 453–461.
  78. Landray MJ, Haynes R, Hopewell JC, et al. HPS2-THRIVE Collaborative Group. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014; 371(3): 203–212.
  79. Martin SS, Blaha MJ, Elshazly MB, et al. Comparison of a novel method vs the Friedewald equation for estimating low-density lipoprotein cholesterol levels from the standard lipid profile. JAMA. 2013; 310(19): 2061–2068.
  80. Quispe R, Hendrani A, Elshazly MB, et al. Accuracy of low-density lipoprotein cholesterol estimation at very low levels. BMC Med. 2017; 15(1): 83.
  81. Chaen H, Kinchiku S, Miyata M, et al. Validity of a Novel Method for Estimation of Low-Density Lipoprotein Cholesterol Levels in Diabetic Patients. J Atheroscler Thromb. 2016; 23(12): 1355–1364.
  82. Miller WG, Myers GL, Sakurabayashi I, et al. Seven direct methods for measuring HDL and LDL cholesterol compared with ultracentrifugation reference measurement procedures. Clin Chem. 2010; 56(6): 977–986.
  83. Sampson M, Ling C, Sun Q, et al. A New Equation for Calculation of Low-Density Lipoprotein Cholesterol in Patients With Normolipidemia and/or Hypertriglyceridemia. JAMA Cardiol. 2020; 5(5): 540–548.
  84. Li KM, Wilcken DE, Dudman NP. Effect of serum lipoprotein(a) on estimation of low-density lipoprotein cholesterol by the Friedewald formula. Clin Chem. 1994; 40(4): 571–573.
  85. Tabas I, Williams KJ, Borén J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007; 116(16): 1832–1844.
  86. Borén J, Williams KJ. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol. 2016; 27(5): 473–483.
  87. NCD Risk Factor Collaboration (NCD-RisC). National trends in total cholesterol obscure heterogeneous changes in HDL and non-HDL cholesterol and total-to-HDL cholesterol ratio: a pooled analysis of 458 population-based studies in Asian and Western countries. Int J Epidemiol. 2020; 49(1): 173–192.
  88. Sygitowicz G, Filipiak K, Sitkiewicz D. Czy nie-HDL cholesterol lepiej niż cholesterol frakcji LDL odzwierciedla ryzyko sercowo-naczyniowe? Folia Cardiologica. 2018; 13(5): 435–441.
  89. Dominiczak MH, Caslake MJ. Apolipoproteins: metabolic role and clinical biochemistry applications. Ann Clin Biochem. 2011; 48(Pt 6): 498–515.
  90. Contois JH, McConnell JP, Sethi AA, et al. AACC Lipoproteins and Vascular Diseases Division Working Group on Best Practices. Apolipoprotein B and cardiovascular disease risk: position statement from the AACC Lipoproteins and Vascular Diseases Division Working Group on Best Practices. Clin Chem. 2009; 55(3): 407–419.
  91. Marcovina SM, Albers JJ. Lipoprotein (a) measurements for clinical application. J Lipid Res. 2016; 57(4): 526–537.
  92. Banach M, Penson PE. Statins and Lp(a): do not make perfect the enemy of excellent. Eur Heart J. 2020; 41(1): 190–191.
  93. Ferretti G, Bacchetti T, Johnston TP, et al. Lipoprotein(a): A missing culprit in the management of athero-thrombosis? J Cell Physiol. 2018; 233(4): 2966–2981.
  94. Toth PP, Jones SR, Monsalvo ML, et al. Effect of Evolocumab on Non-High-Density Lipoprotein Cholesterol, Apolipoprotein B, and Lipoprotein(a): A Pooled Analysis of Phase 2 and Phase 3 Studies. J Am Heart Assoc. 2020; 9(5): e014129.
  95. Banach M. Lipoprotein (a)-We Know So Much Yet Still Have Much to Learn …. J Am Heart Assoc. 2016; 5(4).
  96. Cao J, Steffen BT, Guan W, et al. Evaluation of Lipoprotein(a) Electrophoretic and Immunoassay Methods in Discriminating Risk of Calcific Aortic Valve Disease and Incident Coronary Heart Disease: The Multi-Ethnic Study of Atherosclerosis. Clin Chem. 2017; 63(11): 1705–1713.
  97. Nordestgaard BG, Chapman MJ, Ray K, et al. European Atherosclerosis Society Consensus Panel. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010; 31(23): 2844–2853.
  98. Tsimikas S. A Test in Context: Lipoprotein(a): Diagnosis, Prognosis, Controversies, and Emerging Therapies. J Am Coll Cardiol. 2017; 69(6): 692–711.
  99. Moulin P, Dufour R, Averna M, et al. Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): Expert panel recommendations and proposal of an "FCS score". Atherosclerosis. 2018; 275: 265–272.
  100. Fahed AC, Nemer GM. Familial hypercholesterolemia: the lipids or the genes? Nutr Metab (Lond). 2011; 8(1): 23.
  101. Masson W, Lobo M, Siniawski D, et al. Role of non-statin lipid-lowering therapy in coronary atherosclerosis regression: a meta-analysis and meta-regression. Lipids Health Dis. 2020; 19(1): 111.
  102. Banach M, Serban C, Sahebkar A, et al. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Impact of statin therapy on coronary plaque composition: a systematic review and meta-analysis of virtual histology intravascular ultrasound studies. BMC Med. 2015; 13: 229.
  103. Nicholls SJ, Puri R, Anderson T, et al. Effect of Evolocumab on Coronary Plaque Composition. J Am Coll Cardiol. 2018; 72(17): 2012–2021.
  104. Gencer B, Marston NA, Im K, et al. Efficacy and safety of lowering LDL cholesterol in older patients: a systematic review and meta-analysis of randomised controlled trials. Lancet. 2020; 396(10263): 1637–1643.
  105. Wang N, Fulcher J, Abeysuriya N, et al. Intensive LDL cholesterol-lowering treatment beyond current recommendations for the prevention of major vascular events: a systematic review and meta-analysis of randomised trials including 327 037 participants. Lancet Diabetes Endocrinol. 2020; 8(1): 36–49.
  106. Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017; 38(32): 2459–2472.
  107. Mannarino MR, Sahebkar A, Bianconi V, et al. PCSK9 and neurocognitive function: Should it be still an issue after FOURIER and EBBINGHAUS results? J Clin Lipidol. 2018; 12(5): 1123–1132.
  108. Banach M, Shekoohi N, Mikhailidis D, et al. Relationship Between Low-Density Lipoprotein Cholesterol, Lipid Lowering Agents And The Risk Of Stroke: A Meta-Analysis Of Observational Studies And Randomized Controlled Trials. J Am Coll Cardiol. 2020; 75(11): 2080.
  109. Banach M, Penson PE, Vrablik M, et al. ACS EuroPath Central & South European Countries Project. Optimal use of lipid-lowering therapy after acute coronary syndromes: A Position Paper endorsed by the International Lipid Expert Panel (ILEP). Pharmacol Res. 2021; 166: 105499.
  110. Bohula EA, Bonaca MP, Braunwald E, et al. Atherothrombotic Risk Stratification and the Efficacy and Safety of Vorapaxar in Patients With Stable Ischemic Heart Disease and Previous Myocardial Infarction. Circulation. 2016; 134(4): 304–313.
  111. Jellinger P, Handelsman Y, Rosenblit P, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for Management of Dyslipidemia and Prevention of Cardiovascular Disease. Endocr Pract. 2017; 23: 1–87.
  112. Sabatine MS, De Ferrari GM, Giugliano RP, et al. Clinical Benefit of Evolocumab by Severity and Extent of Coronary Artery Disease: Analysis From FOURIER. Circulation. 2018; 138(8): 756–766.
  113. Jukema J, Szarek M, Zijlstra L, et al. Alirocumab in Patients With Polyvascular Disease and Recent Acute Coronary Syndrome. J Am Coll Cardiol. 2019; 74(9): 1167–1176.
  114. Dyrbuś K, Gąsior M, Desperak P, et al. Risk-factors associated with extremely high cardiovascular risk of mid- and long-term mortality following myocardial infarction: Analysis of the Hyperlipidaemia Therapy in tERtiary Cardiological cEnTer (TERCET) registry. Atherosclerosis. 2021; 333: 16–23.
  115. Katsiki N, Nikolic D, Montalto G, et al. The role of fibrate treatment in dyslipidemia: an overview. Curr Pharm Des. 2013; 19(17): 3124–3131.
  116. Mensink RP, Zock PL, Kester ADM, et al. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003; 77(5): 1146–1155.
  117. Riccardi G, Vaccaro O, Costabile G, et al. How Well Can We Control Dyslipidemias Through Lifestyle Modifications? Curr Cardiol Rep. 2016; 18(7): 66.
  118. Nordmann AJ, Nordmann A, Briel M, et al. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch Intern Med. 2006; 166(3): 285–293.
  119. Shaw K, Gennat H, O'Rourke P, et al. Exercise for overweight or obesity. Cochrane Database Syst Rev. 2006(4): CD003817.
  120. Zhubi-Bakija F, Bajraktari G, Bytyçi I, et al. International Lipid Expert Panel (ILEP). The impact of type of dietary protein, animal versus vegetable, in modifying cardiometabolic risk factors: A position paper from the International Lipid Expert Panel (ILEP). Clin Nutr. 2021; 40(1): 255–276.
  121. Brien SE, Ronksley PE, Turner BJ, et al. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. BMJ. 2011; 342: d636.
  122. Sahebkar A, Serban MC, Gluba-Brzózka A, et al. Lipid-modifying effects of nutraceuticals: An evidence-based approach. Nutrition. 2016; 32(11-12): 1179–1192.
  123. Mazidi M, Mikhailidis DP, Sattar N, et al. International Lipid Expert Panel (ILEP) & Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Association of types of dietary fats and all-cause and cause-specific mortality: A prospective cohort study and meta-analysis of prospective studies with 1,164,029 participants. Clin Nutr. 2020; 39(12): 3677–3686.
  124. Taskinen MR, Söderlund S, Bogl LH, et al. Adverse effects of fructose on cardiometabolic risk factors and hepatic lipid metabolism in subjects with abdominal obesity. J Intern Med. 2017; 282(2): 187–201.
  125. Cosentino F, Grant PJ, Aboyans V, et al. The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020; 41(2): 255–323.
  126. Ganjali S, Banach M, Pirro M, et al. HDL and cancer — causality still needs to be confirmed? Update 2020. Semin Cancer Biol. 2021; 73: 169–177.
  127. Ganjali S, Ricciuti B, Pirro M, et al. High-Density Lipoprotein Components and Functionality in Cancer: State-of-the-Art. Trends Endocrinol Metab. 2019; 30(1): 12–24.
  128. Huffman KM, Hawk VH, Henes ST, et al. Exercise effects on lipids in persons with varying dietary patterns-does diet matter if they exercise? Responses in Studies of a Targeted Risk Reduction Intervention through Defined Exercise I. Am Heart J. 2012; 164(1): 117–124.
  129. Maeda K, Noguchi Y, Fukui T. The effects of cessation from cigarette smoking on the lipid and lipoprotein profiles: a meta-analysis. Prev Med. 2003; 37(4): 283–290.
  130. GBD 2016 Alcohol and Drug Use Collaborators, GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018; 392(10152): 1015–1035.
  131. Penson PE, Banach M. Natural compounds as anti-atherogenic agents: Clinical evidence for improved cardiovascular outcomes. Atherosclerosis. 2021; 316: 58–65.
  132. Fogacci F, Banach M, Mikhailidis DP, et al. Safety of red yeast rice supplementation: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2019; 143: 1–16.
  133. Banach M, Katsiki N, Latkovskis G, et al. Postmarketing nutrivigilance safety profile: a line of dietary food supplements containing red yeast rice for dyslipidemia. Arch Med Sci. 2021; 17(4): 856–863.
  134. Cicero AFG, Colletti A, Bajraktari G, et al. Lipid lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Arch Med Sci. 2017; 13(5): 965–1005.
  135. Cicero AFG, Colletti A, Bajraktari G, et al. Lipid-lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Nutr Rev. 2017; 75(9): 731–767.
  136. Banach M, Patti AM, Giglio RV, et al. International Lipid Expert Panel (ILEP). The Role of Nutraceuticals in Statin Intolerant Patients. J Am Coll Cardiol. 2018; 72(1): 96–118.
  137. Gylling H, Plat J, Turley S, et al. European Atherosclerosis Society Consensus Panel on Phytosterols. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis. 2014; 232(2): 346–360.
  138. Poli A, Barbagallo CM, Cicero AFG, et al. Nutraceuticals and functional foods for the control of plasma cholesterol levels. An intersociety position paper. Pharmacol Res. 2018; 134: 51–60.
  139. Mazidi M, Katsiki N, Shekoohi N, et al. Dietary patterns, plasma vitamins and Trans fatty acids are associated with peripheral artery disease. Lipids Health Dis. 2017; 16(1): 254.
  140. Averna M, Banach M, Bruckert E, et al. Practical guidance for combination lipid-modifying therapy in high- and very-high-risk patients: A statement from a European Atherosclerosis Society Task Force. Atherosclerosis. 2021; 325: 99–109.
  141. Banach M, Bruckert E, Descamps OS, et al. The role of red yeast rice (RYR) supplementation in plasma cholesterol control: A review and expert opinion. Atheroscler Suppl. 2019; 39: e1–e8.
  142. Morze J, Osadnik T, Osadnik K, et al. Network Meta-Analysis on the Comparative Efficacy of Nutraceuticals on Lipid Profile. Circulation. 2019; 140: A13360.
  143. Momtazi AA, Banach M, Pirro M, et al. Regulation of PCSK9 by nutraceuticals. Pharmacol Res. 2017; 120: 157–169.
  144. Stepaniak U, Micek A, Waśkiewicz A, et al. Prevalence of general and abdominal obesity and overweight among adults in Poland. Results of the WOBASZ II study (2013-2014) and comparison with the WOBASZ study (2003-2005). Pol Arch Med Wewn. 2016; 126(9): 662–671.
  145. Hartley L, May MD, Loveman E, et al. Dietary fibre for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2016(1): CD011472.
  146. Rivellese AA, Maffettone A, Vessby B, et al. Effects of dietary saturated, monounsaturated and n-3 fatty acids on fasting lipoproteins, LDL size and post-prandial lipid metabolism in healthy subjects. Atherosclerosis. 2003; 167(1): 149–158.
  147. Bhatt DL, Steg PG, Miller M, et al. REDUCE-IT Investigators. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med. 2019; 380(1): 11–22.
  148. Moholdt T, Lavie CJ, Nauman J. Sustained Physical Activity, Not Weight Loss, Associated With Improved Survival in Coronary Heart Disease. J Am Coll Cardiol. 2018; 71(10): 1094–1101.
  149. Toth PP, Banach M. Statins: Then and Now. Methodist Debakey Cardiovasc J. 2019; 15(1): 23–31.
  150. Shehab A, Elnour AA, Bhagavathula AS, et al. A Multicenter Prospective Hospital-based Cohort Study on the Efficacy and Safety of Pitavastatin. Curr Diabetes Rev. 2021; 17(7): 8–16.
  151. Jones PH, Davidson MH, Stein EA, et al. STELLAR Study Group. Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR* Trial). Am J Cardiol. 2003; 92(2): 152–160.
  152. Banach M, Stulc T, Dent R, et al. Statin non-adherence and residual cardiovascular risk: There is need for substantial improvement. Int J Cardiol. 2016; 225: 184–196.
  153. Banach M, Rizzo M, Toth PP, et al. Statin intolerance — an attempt at a unified definition. Position paper from an International Lipid Expert Panel. Expert Opin Drug Saf. 2015; 14(6): 935–955.
  154. Banach M, Rizzo M, Obradovic M, et al. PCSK9 inhibition - a novel mechanism to treat lipid disorders? Curr Pharm Des. 2013; 19(21): 3869–3877.
  155. Mikhailidis DP, Lawson RW, McCormick AL, et al. Comparative efficacy of the addition of ezetimibe to statin vs statin titration in patients with hypercholesterolaemia: systematic review and meta-analysis. Curr Med Res Opin. 2011; 27(6): 1191–1210.
  156. Banach M, Mikhailidis DP. Statin Intolerance: Some Practical Hints. Cardiol Clin. 2018; 36(2): 225–231.
  157. Banach M, Penson PE, Fras Z, et al. FH Europe and the International Lipid Expert Panel (ILEP). Brief recommendations on the management of adult patients with familial hypercholesterolemia during the COVID-19 pandemic. Pharmacol Res. 2020; 158: 104891.
  158. Banach M, Mikhailidis DP. Statin therapy and new-onset diabetes: an attempt at recommendations. Expert Rev Endocrinol Metab. 2013; 8(3): 213–216.
  159. Baigent C, Blackwell L, Emberson J, et al. Cholesterol Treatment Trialists’ (CTT) Collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010; 376(9753): 1670–1681.
  160. Howell KL, DeVita RJ, Garcia-Calvo M, et al. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci USA. 2005; 102(23): 8132–8137.
  161. Knopp RH, Gitter H, Truitt T, et al. Ezetimibe Study Group. Effects of ezetimibe, a new cholesterol absorption inhibitor, on plasma lipids in patients with primary hypercholesterolemia. Eur Heart J. 2003; 24(8): 729–741.
  162. Simon JS, Karnoub MC, Devlin DJ, et al. Sequence variation in NPC1L1 and association with improved LDL-cholesterol lowering in response to ezetimibe treatment. Genomics. 2005; 86(6): 648–656.
  163. Dujovne CA, Ettinger MP, McNeer JF, et al. Ezetimibe Study Group. Efficacy and safety of a potent new selective cholesterol absorption inhibitor, ezetimibe, in patients with primary hypercholesterolemia. Am J Cardiol. 2002; 90(10): 1092–1097.
  164. Awad K, Mikhailidis DP, Katsiki N, et al. Lipid and Blood Pressure Meta-Analysis Collaboration (LBPMC) Group. Effect of Ezetimibe Monotherapy on Plasma Lipoprotein(a) Concentrations in Patients with Primary Hypercholesterolemia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Drugs. 2018; 78(4): 453–462.
  165. Sahebkar A, Simental-Mendía LE, Pirro M, et al. Impact of ezetimibe on plasma lipoprotein(a) concentrations as monotherapy or in combination with statins: a systematic review and meta-analysis of randomized controlled trials. Sci Rep. 2018; 8(1): 17887.
  166. Tsimikas S, Gordts PL, Nora C, et al. Statin therapy increases lipoprotein(a) levels. Eur Heart J. 2020; 41(24): 2275–2284.
  167. Banach M, Penson PE. Statins and Lp(a): do not make perfect the enemy of excellent. Eur Heart J. 2020; 41(1): 190–191.
  168. Mikhailidis DP, Lawson RW, McCormick AL, et al. Comparative efficacy of the addition of ezetimibe to statin vs statin titration in patients with hypercholesterolaemia: systematic review and meta-analysis. Curr Med Res Opin. 2011; 27(6): 1191–1210.
  169. Dyrbus K, Gasior M, Desperak P, et al. Characteristics of lipid profile and effectiveness of management of dyslipidaemia in patients with acute coronary syndromes - Data from the TERCET registry with 19,287 patients. Pharmacol Res. 2019; 139: 460–466.
  170. Katsiki N, Mikhailidis DP, Banach M. Lipid-lowering agents for concurrent cardiovascular and chronic kidney disease. Expert Opin Pharmacother. 2019; 20(16): 2007–2017.
  171. Serban MC, Banach M, Mikhailidis DP. Clinical implications of the IMPROVE-IT trial in the light of current and future lipid-lowering treatment options. Expert Opin Pharmacother. 2016; 17(3): 369–380.
  172. Bays H, Bays H, Dujovne C. Anti-obesity drug development. Expert Opin Investig Drugs. 2002; 11(9): 1189–1204.
  173. Dragan S, Serban MC, Banach M. Proprotein convertase subtilisin/kexin 9 inhibitors: an emerging lipid-lowering therapy? J Cardiovasc Pharmacol Ther. 2015; 20(2): 157–168.
  174. Marques-Pinheiro A, Marduel M, Rabès JP, et al. French Research Network on ADH. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003; 34(2): 154–156.
  175. Banach M, Rizzo M, Obradovic M, et al. PCSK9 inhibition - a novel mechanism to treat lipid disorders? Curr Pharm Des. 2013; 19(21): 3869–3877.
  176. Sabatine MS, Giugliano RP, Keech AC, et al. FOURIER Steering Committee and Investigators. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med. 2017; 376(18): 1713–1722.
  177. Schwartz GG, Steg PG, Szarek M, et al. ODYSSEY OUTCOMES Committees and Investigators. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med. 2018; 379(22): 2097–2107.
  178. Banach M, Penson PE. What have we learned about lipids and cardiovascular risk from PCSK9 inhibitor outcome trials: ODYSSEY and FOURIER? Cardiovasc Res. 2019; 115(3): e26–e31.
  179. Koskinas KC, Windecker S, Pedrazzini G, et al. Evolocumab for Early Reduction of LDL Cholesterol Levels in Patients With Acute Coronary Syndromes (EVOPACS). J Am Coll Cardiol. 2019; 74(20): 2452–2462.
  180. Leucker TM, Blaha MJ, Jones SR, et al. Effect of Evolocumab on Atherogenic Lipoproteins During the Peri- and Early Postinfarction Period: A Placebo-Controlled, Randomized Trial. Circulation. 2020; 142(4): 419–421.
  181. Trankle CR, Wohlford G, Buckley LF, et al. Alirocumab in Acute Myocardial Infarction: Results From the Virginia Commonwealth University Alirocumab Response Trial (VCU-AlirocRT). J Cardiovasc Pharmacol. 2019; 74(3): 266–269.
  182. Banach M, Rizzo M, Nikolic D, et al. Intensive LDL-cholesterol lowering therapy and neurocognitive function. Pharmacol Ther. 2017; 170: 181–191.
  183. Mannarino MR, Sahebkar A, Bianconi V, et al. PCSK9 and neurocognitive function: Should it be still an issue after FOURIER and EBBINGHAUS results? J Clin Lipidol. 2018; 12(5): 1123–1132.
  184. Giugliano RP, Mach F, Zavitz K, et al. Cognitive Function in a Randomized Trial of Evolocumab. N Engl J Med. 2017; 377(7): 633–643.
  185. Nikolic D, Castellino G, Banach M, et al. PPAR Agonists, Atherogenic Dyslipidemia and Cardiovascular Risk. Curr Pharm Des. 2017; 23(6): 894–902.
  186. Keech A, Simes RJ, Barter P, et al. FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005; 366(9500): 1849–1861.
  187. Ginsberg HN, Elam MB, Lovato LC, et al. ACCORD Study Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010; 362(17): 1563–1574.
  188. Elam MB, Ginsberg HN, Lovato LC, et al. ACCORDION Study Investigators. Association of Fenofibrate Therapy With Long-term Cardiovascular Risk in Statin-Treated Patients With Type 2 Diabetes. JAMA Cardiol. 2017; 2(4): 370–380.
  189. Klempfner R, Erez A, Sagit BZ, et al. Elevated Triglyceride Level Is Independently Associated With Increased All-Cause Mortality in Patients With Established Coronary Heart Disease: Twenty-Two-Year Follow-Up of the Bezafibrate Infarction Prevention Study and Registry. Circ Cardiovasc Qual Outcomes. 2016; 9(2): 100–108.
  190. Araki E, Yamashita S, Arai H, et al. Efficacy and safety of pemafibrate in people with type 2 diabetes and elevated triglyceride levels: 52-week data from the PROVIDE study. Diabetes Obes Metab. 2019; 21(7): 1737–1744.
  191. Pradhan AD, Paynter NP, Everett BM, et al. Rationale and design of the Pemafibrate to Reduce Cardiovascular Outcomes by Reducing Triglycerides in Patients with Diabetes (PROMINENT) study. Am Heart J. 2018; 206: 80–93.
  192. Budoff MJ, Muhlestein JB, Bhatt DL, et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: a prospective, placebo-controlled randomized trial (EVAPORATE): interim results. Cardiovasc Res. 2021; 117(4): 1070–1077.
  193. Manson JE, Cook NR, Lee IM, et al. Marine n-3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N Engl J Med. N Engl J Med. 2019; 380(1): 23–32.
  194. Nicholls SJ, Lincoff AM, Garcia M, et al. Effect of High-Dose Omega-3 Fatty Acids vs Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk: The STRENGTH Randomized Clinical Trial. JAMA. 2020; 324(22): 2268–2280.
  195. Mazidi M, Mikhailidis DP, Banach M. Omega-3 Fatty Acids and Risk of Cardiovascular Disease: Systematic Review and Meta-Analysis of Randomized Controlled Trials With 127, 447 Individuals and a Mendelian Randomization Study. Circulation. 2019; 140: e965–e1011, 20948.
  196. Tadic M, Sala C, Grassi G, et al. Omega-3 Fatty Acids and Coronary Artery Disease: More Questions Than Answers. J Clin Med. 2021; 10(11).
  197. Ooi CP, Loke SC. Colesevelam for Type 2 diabetes mellitus: an abridged Cochrane review. Diabet Med. 2014; 31(1): 2–14.
  198. Grover SA, Abrahamowicz M, Joseph L, et al. The Lipid Research Clinics Coronary Primary Prevention Trial results. I. Reduction in incidence of coronary heart disease. JAMA. 1984; 251(3): 351–364.
  199. The Lipid Research Clinics Coronary Primary Prevention Trial. Results of 6 years of post-trial follow-up. The Lipid Research Clinics Investigators. Arch Intern Med. 1992; 152(7): 1399–1410.
  200. He L, Wickremasingha P, Lee J, et al. Lack of effect of colesevelam HCl on the single-dose pharmacokinetics of aspirin, atenolol, enalapril, phenytoin, rosiglitazone, and sitagliptin. Diabetes Res Clin Pract. 2014; 104(3): 401–409.
  201. Kamanna V, Kashyap M. Mechanism of Action of Niacin. Am J Cardiol. 2008; 101(8): 20B–26B.
  202. Bruckert E, Labreuche J, Amarenco P. Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis. Atherosclerosis. 2010; 210(2): 353–361.
  203. Pikto Pietkiewicz I, Boden WE, Probstfield JL, et al. AIM-HIGH Investigators. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011; 365(24): 2255–2267.
  204. Landray MJ, Haynes R, Hopewell JC, et al. HPS2-THRIVE Collaborative Group. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014; 371(3): 203–212.
  205. De Ba, Jankowski P, Kotseva K, et al. EUROASPIRE V collaborators. Management of dyslipidaemia in patients with coronary heart disease: Results from the ESC-EORP EUROASPIRE V survey in 27 countries. Atherosclerosis. 2019; 285: 135–146.
  206. Baumgartner A, Drame K, Geutjens S, et al. Does the Polypill Improve Patient Adherence Compared to Its Individual Formulations? A Systematic Review. Pharmaceutics. 2020; 12(2).
  207. Selak V, Webster R, Stepien S, et al. Reaching cardiovascular prevention guideline targets with a polypill-based approach: a meta-analysis of randomised clinical trials. Heart. 2019; 105(1): 42–48.
  208. Katzmann JL, Sorio-Vilela F, Dornstauder E, et al. Non-statin lipid-lowering therapy over time in very-high-risk patients: effectiveness of fixed-dose statin/ezetimibe compared to separate pill combination on LDL-C. Clin Res Cardiol. 2020 [Epub ahead of print].
  209. Pappa E, Rizos CV, Filippatos TD, et al. Emerging Fixed-Dose Combination Treatments for Hyperlipidemia. J Cardiovasc Pharmacol Ther. 2019; 24(4): 315–322.
  210. Ballantyne CM, Laufs U, Ray KK, et al. Bempedoic acid plus ezetimibe fixed-dose combination in patients with hypercholesterolemia and high CVD risk treated with maximally tolerated statin therapy. Eur J Prev Cardiol. 2020; 27(6): 593–603.
  211. Laufs U, Parhofer KG, Ginsberg HN, et al. Clinical review on triglycerides. Eur Heart J. 2020; 41(1): 99–109c.
  212. Vallejo-Vaz AJ, Corral P, Schreier L, et al. Triglycerides and residual risk. Curr Opin Endocrinol Diabetes Obes. 2020; 27(2): 95–103.
  213. Gallo A, Béliard S, D'Erasmo L, et al. Familial Chylomicronemia Syndrome (FCS): Recent Data on Diagnosis and Treatment. Curr Atheroscler Rep. 2020; 22(11): 63.
  214. Chait A, Brunzell JD. Chylomicronemia syndrome. Adv Intern Med. 1992; 37: 249–273.
  215. Witztum J, Gaudet D, Freedman S, et al. Volanesorsen and Triglyceride Levels in Familial Chylomicronemia Syndrome. New Engl J Med. 2019; 381(6): 531–542.
  216. Ruscica M, Banach M, Sahebkar A, et al. ETC-1002 (Bempedoic acid) for the management of hyperlipidemia: from preclinical studies to phase 3 trials. Expert Opin Pharmacother. 2019; 20(7): 791–803.
  217. Ballantyne CM, Banach M, Mancini GB, et al. Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypercholesterolemia: A randomized, placebo-controlled study. Atherosclerosis. 2018; 277: 195–203.
  218. Ray KK, Bays HE, Catapano AL, et al. CLEAR Harmony Trial. Safety and Efficacy of Bempedoic Acid to Reduce LDL Cholesterol. N Engl J Med. 2019; 380(11): 1022–1032.
  219. Laufs U, Banach M, Mancini GB, et al. Efficacy and Safety of Bempedoic Acid in Patients With Hypercholesterolemia and Statin Intolerance. J Am Heart Assoc. 2019; 8(7): e011662.
  220. Goldberg AC, Leiter LA, Stroes ESG, et al. Effect of Bempedoic Acid vs Placebo Added to Maximally Tolerated Statins on Low-Density Lipoprotein Cholesterol in Patients at High Risk for Cardiovascular Disease: The CLEAR Wisdom Randomized Clinical Trial. JAMA. 2019; 322(18): 1780–1788.
  221. Banach M, Duell PB, Gotto AM, et al. Association of Bempedoic Acid Administration With Atherogenic Lipid Levels in Phase 3 Randomized Clinical Trials of Patients With Hypercholesterolemia. JAMA Cardiol. 2020; 5(10): 1124–1135.
  222. Cicero AFG, Fogacci F, Hernandez AV, et al. Lipid and Blood Pressure Meta-Analysis Collaboration (LBPMC) Group and the International Lipid Expert Panel (ILEP). Efficacy and safety of bempedoic acid for the treatment of hypercholesterolemia: A systematic review and meta-analysis. PLoS Med. 2020; 17(7): e1003121.
  223. Banach M, Penson PE. Lipid-lowering therapies: Better together. Atherosclerosis. 2021; 320: 86–88.
  224. Dyrbuś K, Gąsior M, Penson P, et al. Inclisiran-New hope in the management of lipid disorders? J Clin Lipidol. 2020; 14(1): 16–27.
  225. Kosmas CE, Muñoz Estrella A, Skavdis A, et al. Inclisiran for the Treatment of Cardiovascular Disease: A Short Review on the Emerging Data and Therapeutic Potential. Ther Clin Risk Manag. 2020; 16: 1031–1037.
  226. Ciccarelli G, D'Elia S, De Paulis M, et al. Lipid Target in Very High-Risk Cardiovascular Patients: Lesson from PCSK9 Monoclonal Antibodies. Diseases. 2018; 6(1).
  227. Raal FJ, Kallend D, Ray KK, et al. ORION-9 Investigators. Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. N Engl J Med. 2020; 382(16): 1520–1530.
  228. Ray KK, Wright RS, Kallend D, et al. ORION-10 and ORION-11 Investigators. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N Engl J Med. 2020; 382(16): 1507–1519.
  229. Khan SA, Naz A, Qamar Masood M, et al. Meta-Analysis of Inclisiran for the Treatment of Hypercholesterolemia. Am J Cardiol. 2020; 134: 69–73.
  230. Cordero A, Santos-Gallego CG, Fácila L, et al. Estimation of the major cardiovascular events prevention with Inclisiran. Atherosclerosis. 2020; 313: 76–80.
  231. Nikolic D, Rizzo M, Mikhailidis DP, et al. An evaluation of RVX-208 for the treatment of atherosclerosis. Expert Opin Investig Drugs. 2015; 24(10): 1389–1398.
  232. Nicholls SJ, Ray KK, Johansson JO, et al. Selective BET Protein Inhibition with Apabetalone and Cardiovascular Events: A Pooled Analysis of Trials in Patients with Coronary Artery Disease. Am J Cardiovasc Drugs. 2018; 18(2): 109–115.
  233. Ray KK, Nicholls SJ, Buhr KA, et al. BETonMACE Investigators and Committees. Effect of Apabetalone Added to Standard Therapy on Major Adverse Cardiovascular Events in Patients With Recent Acute Coronary Syndrome and Type 2 Diabetes: A Randomized Clinical Trial. JAMA. 2020; 323(16): 1565–1573.
  234. Kalantar-Zadeh K, Schwartz GG, Nicholls SJ, et al. BETonMACE Investigators. Effect of Apabetalone on Cardiovascular Events in Diabetes, CKD, and Recent Acute Coronary Syndrome: Results from the BETonMACE Randomized Controlled Trial. Clin J Am Soc Nephrol. 2021; 16(5): 705–716.
  235. Rocha NA, East C, Zhang J, et al. ApoCIII as a Cardiovascular Risk Factor and Modulation by the Novel Lipid-Lowering Agent Volanesorsen. Curr Atheroscler Rep. 2017; 19(12): 62.
  236. Sahebkar A, Simental-Mendía LE, Katsiki N, et al. Effect of fenofibrate on plasma apolipoprotein C-III levels: a systematic review and meta-analysis of randomised placebo-controlled trials. BMJ Open. 2019; 8(11): e021508.
  237. Gouni-Berthold I, Alexander V, Digenio A, et al. Apolipoprotein C-III inhibition with volanesorsen in patients with hypertriglyceridemia (COMPASS): A randomized, double-blind, placebo-controlled trial. Atherosclerosis Suppl. 2017; 28: e1–e2.
  238. Witztum JL, Gaudet D, Freedman SD, et al. Volanesorsen and Triglyceride Levels in Familial Chylomicronemia Syndrome. N Engl J Med. 2019; 381(6): 531–542.
  239. Gouni-Berthold I, Alexander V, Yang Q, et al. Efficacy and safety of volanesorsen in patients with multifactorial chylomicronaemia (COMPASS): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Diab Endocrinol. 2021; 9(5): 264–275.
  240. Raal FJ, Rosenson RS, Reeskamp LF, et al. ELIPSE HoFH Investigators. Evinacumab for Homozygous Familial Hypercholesterolemia. N Engl J Med. 2020; 383(8): 711–720.
  241. Rosenson RS, Burgess LJ, Ebenbichler CF, et al. Evinacumab in Patients with Refractory Hypercholesterolemia. N Engl J Med. 2020; 383(24): 2307–2319.
  242. Ahmad Z, Pordy R, Rader DJ, et al. Inhibition of Angiopoietin-Like Protein 3 With Evinacumab in Subjects With High and Severe Hypertriglyceridemia. J Am Coll Cardiol. 2021; 78(2): 193–195.
  243. Miname MH, Rocha VZ, Santos RD. The Role of RNA-Targeted Therapeutics to Reduce ASCVD Risk: What Have We Learned Recently? Curr Atheroscler Rep. 2021; 23(8): 40.
  244. Gaudet D, Karwatowska-Prokopczuk E, Baum SJ, et al. Vupanorsen Study Investigators. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia. Eur Heart J. 2020; 41(40): 3936–3945.
  245. Parham JS, Goldberg AC. Mipomersen and its use in familial hypercholesterolemia. Expert Opin Pharmacother. 2019; 20(2): 127–131.
  246. Shah NP, Pajidipati NJ, McGarrah RW, et al. Lipoprotein (a): An Update on a Marker of Residual Risk and Associated Clinical Manifestations. Am J Cardiol. 2020; 126: 94–102.
  247. Gencer B, Mach F. Potential of Lipoprotein(a)-Lowering Strategies in Treating Coronary Artery Disease. Drugs. 2020; 80(3): 229–239.
  248. O'Donoghue ML, Morrow DA, Tsimikas S, et al. Lipoprotein(a) for risk assessment in patients with established coronary artery disease. J Am Coll Cardiol. 2014; 63(6): 520–527.
  249. Wilson DP, Jacobson TA, Jones PH, et al. Use of Lipoprotein(a) in clinical practice: A biomarker whose time has come. A scientific statement from the National Lipid Association. J Clin Lipidol. 2019; 13(3): 374–398.
  250. Langsted A, Nordestgaard BG. Lipoprotein(a): is it more, less or equal to LDL as a causal factor for cardiovascular disease and mortality? Curr Opin Lipidol. 2020; 31(3): 125–131.
  251. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol. Circulation. 2019; 139: e1082–e1143.
  252. O'Donoghue ML, Fazio S, Giugliano RP, et al. Lipoprotein(a), PCSK9 Inhibition, and Cardiovascular Risk. Circulation. 2019; 139(12): 1483–1492.
  253. Bittner V, Szarek M, Aylward P, et al. Lipoprotein(a) lowering by alirocumab contributes to event reduction independent of low-density lipoprotein cholesterol in the ODYSSEY OUTCOMES trial. J Am Coll Cardiol. 2020; 75: 133–144.
  254. Szarek M, Bittner VA, Aylward P, et al. ODYSSEY OUTCOMES Investigators. Lipoprotein(a) lowering by alirocumab reduces the total burden of cardiovascular events independent of low-density lipoprotein cholesterol lowering: ODYSSEY OUTCOMES trial. Eur Heart J. 2020; 41(44): 4245–4255.
  255. Burgess S, Ference BA, Staley JR, et al. European Prospective Investigation Into Cancer and Nutrition–Cardiovascular Disease (EPIC-CVD) Consortium. Association of LPA Variants With Risk of Coronary Disease and the Implications for Lipoprotein(a)-Lowering Therapies: A Mendelian Randomization Analysis. JAMA Cardiol. 2018; 3(7): 619–627.
  256. Araszkiewicz A, Bandurska-Stankiewicz E, Budzyński A, et al. 2020 Guidelines on the management of diabetic patients. A position of Diabetes Poland. Clin Diabetol. 2020; 9(1): 1–101.
  257. Seferović P, Coats A, Ponikowski P, et al. European Society of Cardiology/Heart Failure Association position paper on the role and safety of new glucose‐lowering drugs in patients with heart failure. Eur J Heart Fail. 2020; 22(2): 196–213.
  258. Cuchel M, Bruckert E, Ginsberg HN, et al. Homozygous familial hypercholesterolemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolemia of the European Atheroslcerosis Society. Eur Heart J. 2014; 35(32): 2146–2157.
  259. Stefanutti C, Julius U. Lipoprotein apheresis: state of the art and novelties. Atheroscler Suppl. 2013; 14(1): 19–27.
  260. Schuff-Werner P, Fenger S, Kohlschein P. Role of lipid apheresis in changing times. Clin Res Cardiol Suppl. 2012; 7: 7–14.
  261. Thompson GR. HEART-UK LDL Apheresis Working Group. Recommendations for the use of LDL apheresis. Atherosclerosis. 2008; 198(2): 247–255.
  262. Harada-Shiba M, Ako J, Arai H, et al. Guidelines for the management of familial hypercholesterolemia. J Atheroscler Thromb. 2012; 19(12): 1043–1060.
  263. Goldberg AC, Hopkins PN, Toth PP, et al. National Lipid Association Expert Panel on Familial Hypercholesterolemia. Familial hypercholesterolemia: screening, diagnosis and management of pediatric and adult patients: clinical guidance from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol. 2011; 5(3 Suppl): S1–S8.
  264. Cuchel M, Bruckert E, Ginsberg HN, et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J. 2014; 35(32): 2146–2157.
  265. Raal F, Honarpour N, Blom D, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015; 385(9965): 341–350.
  266. Raal FJ, Hovingh GK, Blom D, et al. Long-term treatment with evolocumab added to conventional drug therapy, with or without apheresis, in patients with homozygous familial hypercholesterolaemia: an interim subset analysis of the open-label TAUSSIG study. Lancet Diabetes Endocrinol. 2017; 5(4): 280–290.
  267. Moriarty PM, Parhofer KG, Babirak SP, et al. Alirocumab in patients with heterozygous familial hypercholesterolaemia undergoing lipoprotein apheresis: the ODYSSEY ESCAPE trial. Eur Heart J. 2016; 37(48): 3588–3595.
  268. https://ptnefro.pl/index.php/sekcje_i_grupy_robocze.
  269. Rawla P, Sunkara T, Thandra KC, et al. Hypertriglyceridemia-induced pancreatitis: updated review of current treatment and preventive strategies. Clin J Gastroenterol. 2018; 11(6): 441–448.
  270. Ewald N, Hardt PD, Kloer HU. Severe hypertriglyceridemia and pancreatitis: presentation and management. Curr Opin Lipidol. 2009; 20(6): 497–504.
  271. Song X, Shi Di, Cui Q, et al. Intensive insulin therapy versus plasmapheresis in the management of hypertriglyceridemia-induced acute pancreatitis (Bi-TPAI trial): study protocol for a randomized controlled trial. Trials. 2019; 20(1): 365.
  272. Schettler VJJ, Neumann CL, Peter C, et al. Scientific Board of GLAR for the German Apheresis Working Group. Lipoprotein apheresis is an optimal therapeutic option to reduce increased Lp(a) levels. Clin Res Cardiol Suppl. 2019; 14(Suppl 1): 33–38.
  273. Schettler VJJ, Neumann CL, Peter C, et al. Scientific Board of GLAR for the German Apheresis Working Group. The German Lipoprotein Apheresis Registry (GLAR) — almost 5 years on. Clin Res Cardiol Suppl. 2017; 12(Suppl 1): 44–49.
  274. Vogt A. Lipoprotein(a)-apheresis in the light of new drug developments. Atheroscler Suppl. 2017; 30: 38–43.
  275. Bianconi V, Banach M, Pirro M, et al. International Lipid Expert Panel (ILEP). Why patients with familial hypercholesterolemia are at high cardiovascular risk? Beyond LDL-C levels. Trends Cardiovasc Med. 2021; 31(4): 205–215.
  276. Beheshti SO, Madsen CM, Varbo A, et al. Worldwide Prevalence of Familial Hypercholesterolemia: Meta-Analyses of 11 Million Subjects. J Am Coll Cardiol. 2020; 75(20): 2553–2566.
  277. Nordestgaard BG, Chapman MJ, Humphries SE, et al. European Atherosclerosis Society Consensus Panel. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013; 34(45): 3478–90a.
  278. Chlebus K, Cybulska B, Gruchała M, et al. Prevalence, diagnosis, and treatment of familial hypercholesterolaemia in outpatient practices in Poland. Kardiol Pol. 2018; 76(6): 960–967.
  279. Pajak A, Szafraniec K, Polak M, et al. Prevalence of familial hypercholesterolemia: a meta-analysis of six large, observational, population-based studies in Poland. Arch Med Sci. 2016; 12(4): 687–696.
  280. Banach M, Wojtowicz E, Mastej M, et al. LIPIDOGRAM studies. Prevalence of familial hypercholesterolemia in Poland in the LIPIDOGRAM2004 and 2006 population-based surveys. Eur Heart J. 2017; 98(Suppl 1): P5304.
  281. Leigh SEA, Foster AH, Whittall RA, et al. Update and analysis of the University College London low density lipoprotein receptor familial hypercholesterolemia database. Ann Hum Genet. 2008; 72(Pt 4): 485–498.
  282. Trinder M, Francis GA, Brunham LR. Association of Monogenic vs Polygenic Hypercholesterolemia With Risk of Atherosclerotic Cardiovascular Disease. JAMA Cardiol. 2020; 5(4): 390–399.
  283. Brown EE, Sturm AC, Cuchel M, et al. Genetic testing in dyslipidemia: A scientific statement from the National Lipid Association. J Clin Lipidol. 2020; 14(4): 398–413.
  284. Thompson GR, Blom DJ, Marais AD, et al. Survival in homozygous familial hypercholesterolaemia is determined by the on-treatment level of serum cholesterol. Eur Heart J. 2018; 39(14): 1162–1168.
  285. de Ferranti SD, Rodday AM, Mendelson MM, et al. Prevalence of Familial Hypercholesterolemia in the 1999 to 2012 United States National Health and Nutrition Examination Surveys (NHANES). Circulation. 2016; 133(11): 1067–1072.
  286. Myśliwiec M, Walczak M, Małecka-Tendera E, et al. Management of familial hypercholesterolemia in children and adolescents. Position paper of the Polish Lipid Expert Forum. J Clin Lipidol. 2014; 8(2): 173–180.
  287. Lewek J, Konopka A, Starostecka E, et al. Clinical features of familial hypercholesterolemia in children and adults in EAS-FHSC Regional Centre for Rare Diseases in Poland. J Clin Med. 2021; [ahead of print].
  288. Blom DJ, Harada-Shiba M, Rubba P, et al. Efficacy and Safety of Alirocumab in Adults With Homozygous Familial Hypercholesterolemia: The ODYSSEY HoFH Trial. J Am Coll Cardiol. 2020; 76(2): 131–142.
  289. Blom DJ, Cuchel M, Ager M, et al. Target achievement and cardiovascular event rates with Lomitapide in homozygous Familial Hypercholesterolaemia. Orphanet J Rare Dis. 2018; 13(1): 96.
  290. Rawshani A, Rawshani A, Franzén S, et al. Mortality and Cardiovascular Disease in Type 1 and Type 2 Diabetes. N Engl J Med. 2017; 376(15): 1407–1418.
  291. Olesen KKW, Madsen M, Egholm G, et al. Patients With Diabetes Without Significant Angiographic Coronary Artery Disease Have the Same Risk of Myocardial Infarction as Patients Without Diabetes in a Real-World Population Receiving Appropriate Prophylactic Treatment. Diabetes Care. 2017; 40(8): 1103–1110.
  292. Katsiki N, Banach M, Mikhailidis D. Is type 2 diabetes mellitus a coronary heart disease equivalent or not? Do not just enjoy the debate and forget the patient! Arch Med Sci. 2019; 15(6): 1357–1364.
  293. Taskinen MR, Borén J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis. 2015; 239(2): 483–495.
  294. Cieluch A, Uruska A, Grzelka-Woźniak A, et al. Changes in high-density lipoprotein cholesterol (HDL-C) level and the ratio of triglycerides to HDL-C during the first year of type 1 diabetes. Pol Arch Intern Med. 2019; 129(9): 598–604.
  295. Annuzzi G, Iovine C, Mandarino B, et al. Effect of acute exogenous hyperinsulinaemia on very low density lipoprotein subfraction composition in normal subjects. Eur J Clin Invest. 2001; 31(2): 118–124.
  296. Fendler W, Rizzo M, Borowiec M, et al. Less but better: cardioprotective lipid profile of patients with GCK-MODY despite lower HDL cholesterol level. Acta Diabetol. 2014; 51(4): 625–632.
  297. Cannon CP, Blazing MA, Giugliano RP, et al. IMPROVE-IT Investigators. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N Engl J Med. 2015; 372(25): 2387–2397.
  298. Sabatine M, Leiter L, Wiviott S, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017; 5(12): 941–950.
  299. Ray KK, Colhoun HM, Szarek M, et al. ODYSSEY OUTCOMES Committees and Investigators. Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol. 2019; 7(8): 618–628.
  300. Niklas A, Marcinkowska J, Kozela M, et al. Blood pressure and cholesterol control in patients with hypertension and hypercholesterolemia: the results from the Polish multicenter national health survey WOBASZ II. Pol Arch Intern Med. 2019; 129(12): 864–873.
  301. Tykarski A, Filipiak K, Januszewicz A, et al. 2019 Guidelines for the Management of Hypertension — Part 1–7. Arterial Hypertens. 2019; 23(2): 41–87.
  302. Williams B, Mancia G, Spiering W, et al. Authors/Task Force Members:, ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018; 39(33): 3021–3104.
  303. Gupta AK, Arshad S, Poulter NR. Compliance, safety, and effectiveness of fixed-dose combinations of antihypertensive agents: a meta-analysis. Hypertension. 2010; 55(2): 399–407.
  304. Dobrowolski P, Klisiewicz A, Florczak E, et al. Independent association of obstructive sleep apnea with left ventricular geometry and systolic function in resistant hypertension: the RESIST-POL study. Sleep Med. 2014; 15(11): 1302–1308.
  305. Prejbisz A, Dobrowolski P, Kosiński P, et al. Management of hypertension in pregnancy: prevention, diagnosis, treatment and long‑term prognosis. Kardiol Pol. 2019; 77(7-8): 757–806.
  306. Tykarski A, Filipiak K, Januszewicz A, et al. 2019 Guidelines for the Management of Hypertension — Part 8–9. Arterial Hypertension. 2019; 23(4): 203–239.
  307. Awad K, Mikhailidis DP, Toth PP, et al. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Efficacy and Safety of Alternate-Day Versus Daily Dosing of Statins: a Systematic Review and Meta-Analysis. Cardiovasc Drugs Ther. 2017; 31(4): 419–431.
  308. Bonaca MP, Nault P, Giugliano RP, et al. Low-Density Lipoprotein Cholesterol Lowering With Evolocumab and Outcomes in Patients With Peripheral Artery Disease: Insights From the FOURIER Trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk). Circulation. 2018; 137(4): 338–350.
  309. Nissen SE, Stroes E, Dent-Acosta RE, et al. GAUSS-3 Investigators. Efficacy and Tolerability of Evolocumab vs Ezetimibe in Patients With Muscle-Related Statin Intolerance: The GAUSS-3 Randomized Clinical Trial. JAMA. 2016; 315(15): 1580–1590.
  310. Mannarino MR, Sahebkar A, Bianconi V, et al. PCSK9 and neurocognitive function: Should it be still an issue after FOURIER and EBBINGHAUS results? J Clin Lipidol. 2018; 12(5): 1123–1132.
  311. Mendieta G, Ben-Aicha S, Gutiérrez M, et al. Intravenous Statin Administration During Myocardial Infarction Compared With Oral Post-Infarct Administration. J Am Coll Cardiol. 2020; 75(12): 1386–1402.
  312. Dyrbus K, Gasior M, Witkowski A, et al. Opinie i Stanowiska Ekspertów: Leczenie zaburzeń lipidowych u chorych z przewlekłym zespołem wieńcowym i z ostrym zespołem wieńcowym. Kardiol Pol. 2020; 5(Zeszyty Edukacyjne): 98–132.
  313. Taylor F, Huffman MD, Macedo AF, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013(1): CD004816.
  314. Aung PP, Maxwell HG, Jepson RG, et al. Lipid-lowering for peripheral arterial disease of the lower limb. Cochrane Database Syst Rev. 2007(4): CD000123.
  315. Szarek M, Steg PhG, DiCenso D, et al. Alirocumab Reduces Total Hospitalizations and Increases Days Alive and Out of Hospital in the ODYSSEY OUTCOMES Trial. Circ Cardiovasc Qual Outcomes. 2019; 12(11): e005858.
  316. Awad K, Mohammed M, Zaki MM, et al. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group and the International Lipid Expert Panel (ILEP). Association of statin use in older people primary prevention group with risk of cardiovascular events and mortality: a systematic review and meta-analysis of observational studies. BMC Med. 2021; 19(1): 139.
  317. Banach M, Shekoohi N, Mikhailidis D, et al. Relationship Between Low-Density Lipoprotein Cholesterol, Lipid Lowering Agents And The Risk Of Stroke: A Meta-Analysis Of Observational Studies And Randomized Controlled Trials. J Am Coll Cardiol. 2020; 75(11_Suppl 1): 2080.
  318. Preiss D, Campbell RT, Murray HM, et al. The effect of statin therapy on heart failure events: a collaborative meta-analysis of unpublished data from major randomized trials. Eur Heart J. 2015; 36(24): 1536–1546.
  319. Liu G, Zheng XX, Xu YL, et al. Meta-analysis of the effect of statins on mortality in patients with preserved ejection fraction. Am J Cardiol. 2014; 113(7): 1198–1204.
  320. Bielecka-Dabrowa A, Bytyçi I, Von Haehling S, et al. Association of statin use and clinical outcomes in heart failure patients: a systematic review and meta-analysis. Lipids Health Dis. 2019; 18(1): 188.
  321. Deo SV, Rababa'h A, Altarabsheh SE, et al. Statin therapy improves long-term survival in non-ischaemic cardiomyopathy: a pooled analysis of 4500 patients. Heart Lung Circ. 2014; 23(10): 985–987.
  322. Tavazzi L, Maggioni AP, Marchioli R, et al. Gissi-HF Investigators. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008; 372(9645): 1231–1239.
  323. Al-Gobari M, Le HH, Fall M, et al. No benefits of statins for sudden cardiac death prevention in patients with heart failure and reduced ejection fraction: A meta-analysis of randomized controlled trials. PLoS One. 2017; 12(2): e0171168.
  324. Bonsu KO, Reidpath DD, Kadirvelu A. Lipophilic Statin Versus Rosuvastatin (Hydrophilic) Treatment for Heart Failure: a Meta-Analysis and Adjusted Indirect Comparison of Randomised Trials. Cardiovasc Drugs Ther. 2016; 30(2): 177–188.
  325. Tavazzi L, Maggioni AP, Marchioli R, et al. GISSI HF Investigators. Effect of n 3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI HF trial): a ran domised, double blind, placebo controlled trial. Lancet. 2008; 372(9645): 1223–1230.
  326. Banach M. Lipid and Blood Pressure Meta-Analysis Collaboration Group. Statins in patients with chronic kidney disease — an attempt at recommendations. Curr Med Res Opin. 2013; 29(11): 1419–1422.
  327. Tonelli M, Muntner P, Lloyd A, et al. Alberta Kidney Disease Network. Association between LDL-C and risk of myocardial infarction in CKD. J Am Soc Nephrol. 2013; 24(6): 979–986.
  328. Herrington W, Emberson J, Mihaylova B, et al. Cholesterol Treatment Trialists' (CTT) Collaboration. Impact of renal function on the effects of LDL cholesterol lowering with statin-based regimens: a meta-analysis of individual participant data from 28 randomised trials. Lancet Diabetes Endocrinol. 2016; 4(10): 829–839.
  329. Barylski M, Nikfar S, Mikhailidis DP, et al. Lipid and Blood Pressure Meta-Analysis Collaboration Group. Statins decrease all-cause mortality only in CKD patients not requiring dialysis therapy--a meta-analysis of 11 randomized controlled trials involving 21,295 participants. Pharmacol Res. 2013; 72: 35–44.
  330. Nikolic D, Nikfar S, Salari P, et al. Lipid and Blood Pressure Meta-Analysis Collaboration Group. Effects of statins on lipid profile in chronic kidney disease patients: a meta-analysis of randomized controlled trials. Curr Med Res Opin. 2013; 29(5): 435–451.
  331. Nikolic D, Banach M, Nikfar S, et al. Lipid and Blood Pressure Meta-Analysis Collaboration Group. A meta-analysis of the role of statins on renal outcomes in patients with chronic kidney disease. Is the duration of therapy important? Int J Cardiol. 2013; 168(6): 5437–5447.
  332. Ferro CJ, Mark PB, Kanbay M, et al. Lipid management in patients with chronic kidney disease. Nat Rev Nephrol. 2018; 14(12): 727–749.
  333. Palmer SC, Navaneethan SD, Craig JC, et al. HMG CoA reductase inhibitors (statins) for kidney transplant recipients. Cochrane Database Syst Rev. 2014(1): CD005019.
  334. Lin YC, Lai TS, Wu HY, et al. Effects and Safety of Statin and Ezetimibe Combination Therapy in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Clin Pharmacol Ther. 2020; 108(4): 833–843.
  335. Baigent C, Landray MJ, Reith C, et al. SHARP Investigators. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011; 377(9784): 2181–2192.
  336. Jun M, Zhu B, Tonelli M, et al. Effects of fibrates in kidney disease: a systematic review and meta-analysis. J Am Coll Cardiol. 2012; 60(20): 2061–2071.
  337. Charytan DM, Sabatine MS, Pedersen TR, et al. FOURIER Steering Committee and Investigators. Efficacy and Safety of Evolocumab in Chronic Kidney Disease in the FOURIER Trial. J Am Coll Cardiol. 2019; 73(23): 2961–2970.
  338. Toth PP, Dwyer JP, Cannon CP, et al. Efficacy and safety of lipid lowering by alirocumab in chronic kidney disease. Kidney Int. 2018; 93(6): 1397–1408.
  339. Wright RS, Collins MG, Stoekenbroek RM, et al. Effects of Renal Impairment on the Pharmacokinetics, Efficacy, and Safety of Inclisiran: An Analysis of the ORION-7 and ORION-1 Studies. Mayo Clin Proc. 2020; 95(1): 77–89.
  340. KDIGO clinical practice guideline for lipid management in chronic kidney disease. Kidney Int. 2014; 85: 1303–1309.
  341. de Zeeuw D, Anzalone DA, Cain VA, et al. Renal effects of atorvastatin and rosuvastatin in patients with diabetes who have progressive renal disease (PLANET I): a randomised clinical trial. Lancet Diabetes Endocrinol. 2015; 3(3): 181–190.
  342. Herrera-Gómez F, Chimeno MM, Martín-García D, et al. Cholesterol-Lowering Treatment in Chronic Kidney Disease: Multistage Pairwise and Network Meta-Analyses. Sci Rep. 2019; 9(1): 8951.
  343. Cybulska B, Kłosiewicz-Latoszek L. Komentarz do artykułu „Ocena skuteczności i bezpieczeństwa stosowania statyn u dzieci chorych na rodzinną hipercholesterolemię”. Medycyna Praktyczna 2016. http://www.mp.pl/artykuly/26863 (30 czerwca 2016).
  344. Myśliwiec M, Walczak M, Małecka-Tendera E, et al. Management of familial hypercholesterolemia in children and adolescents. Position paper of the Polish Lipid Expert Forum. J Clin Lipidol. 2014; 8(2): 173–180.
  345. Stolarz-Skrzypek K, Bednarski A, Drożdż D, et al. Prewencja miażdżycy u dzieci — rola statyn i kwasu acetylosalicylowego. Przegl Lek. 2013; 70(2): 57–64.
  346. Ramaswami U, Humphries SE, Priestley-Barnham L, et al. Current management of children and young people with heterozygous familial hypercholesterolaemia — HEART UK statement of care. Atherosclerosis. 2019; 290: 1–8.
  347. Peterson AL, McBride PE. A review of guidelines for dyslipidemia in children and adolescents. WMJ. 2012; 111(6): 274–274.
  348. Niinikoski H, Viikari J, Rönnemaa T, et al. Prospective randomized trial of low-saturated-fat, low-cholesterol diet during the first 3 years of life. The STRIP baby project. Circulation. 1996; 94(6): 1386–1393.
  349. Perk J, De Ba, Gohlke H, et al. Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice; European Association for Cardiovascular Prevention and Rehabilitation. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012): The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Atherosclerosis. 2012; 223(1): 1–68.
  350. Goldwire M. Screening and Treatment of Pediatric Dyslipidemias. US Pharm. 2014; 39(5): 52–56.
  351. Obarzanek E, Kimm SY, Barton BA, et al. DISC Collaborative Research Group. Long-term safety and efficacy of a cholesterol-lowering diet in children with elevated low-density lipoprotein cholesterol: seven-year results of the Dietary Intervention Study in Children (DISC). Pediatrics. 2001; 107(2): 256–264.
  352. Cameron C, Craig CL, Bull FC, et al. Canada's physical activity guides: has their release had an impact? Can J Public Health. 2007; 98 Suppl 2: S161–S169.
  353. Lamaida N, Capuano E, Pinto L, et al. The safety of statins in children. Acta Paediatr. 2013; 102(9): 857–862.
  354. Vuorio A, Kuoppala J, Kovanen PT, et al. Statins for children with familial hypercholesterolemia. Cochrane Database Syst Rev. 2014(7): CD006401.
  355. Raal FJ, Braamskamp MJ, Selvey SL, et al. Pediatric experience with mipomersen as adjunctive therapy for homozygous familial hypercholesterolemia. J Clin Lipidol. 2016; 10(4): 860–869.
  356. Daniels S, Caprio S, Chaudhari U, et al. PCSK9 inhibition with alirocumab in pediatric patients with heterozygous familial hypercholesterolemia: The ODYSSEY KIDS study. J Clin Lipidol. 2020; 14(3): 322–330.e5.
  357. Santos RD, Ruzza A, Hovingh GK, et al. HAUSER-RCT Investigators. Evolocumab in Pediatric Heterozygous Familial Hypercholesterolemia. N Engl J Med. 2020; 383(14): 1317–1327.
  358. Elkins C, Fruh S, Jones L, et al. Clinical Practice Recommendations for Pediatric Dyslipidemia. J Pediatr Health Care. 2019; 33(4): 494–504.
  359. Ashraf AP, Sunil B, Bamba V, et al. Primary hypertriglyceridemia in children and adolescents. J Clin Lipidol. 2015; 9(5 Suppl): S20–S28.
  360. Shah AS, Wilson DP. Genetic Disorders Causing Hypertriglyceridemia in Children and Adolescents. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, Grossman A, Hershman JM, Hofland HJ, Kaltsas G, Koch C, Kopp P, Korbonits M, McLachlan R, Morley JE, New M, Purnell J, Singer F, Stratakis CA, Trence DL. ed. Endotext [Internet]. MDText.com, South Dartmouth (MA) 2020: Jan.
  361. Lewington S, Whitlock G, Clarke R, et al. Prospective Studies Collaboration. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet. 2007; 370(9602): 1829–1839.
  362. Reiner Z. Primary prevention of cardiovascular disease with statins in the elderly. Curr Atheroscler Rep. 2014; 16(7): 420.
  363. Cholesterol Treatment Trialists' Collaboration. Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials. Lancet. 2019; 393(10170): 407–415.
  364. Gencer B, Marston NA, Im K, et al. Efficacy and safety of lowering LDL cholesterol in older patients: a systematic review and meta-analysis of randomised controlled trials. Lancet. 2020; 396(10263): 1637–1643.
  365. Awad K, Mohammed M, Zaki MM, et al. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group and the International Lipid Expert Panel (ILEP). Association of statin use in older people primary prevention group with risk of cardiovascular events and mortality: a systematic review and meta-analysis of observational studies. BMC Med. 2021; 19(1): 139.
  366. Cybulska B, Kłosiewicz-Latoszek L. Czy warto leczyć hiperlipidemię u ludzi starszych. In: Cybulska B, Kłosiewicz-Latoszek L. ed. Zaburzenia lipidowe. Termedia, Poznań 2010: 171–184.
  367. Peters MJL, Symmons DPM, McCarey D, et al. EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. Ann Rheum Dis. 2010; 69(2): 325–331.
  368. Gladman DD, Ang M, Su L, et al. Cardiovascular morbidity in psoriatic arthritis. Ann Rheum Dis. 2009; 68(7): 1131–1135.
  369. Liao KP, Playford MP, Frits M, et al. The association between reduction in inflammation and changes in lipoprotein levels and HDL cholesterol efflux capacity in rheumatoid arthritis. J Am Heart Assoc. 2015; 4(2).
  370. Maierean SM, Mikhailidis DP, Toth PP, et al. The potential role of statins in preeclampsia and dyslipidemia during gestation: a narrative review. Expert Opin Investig Drugs. 2018; 27(5): 427–435.
  371. Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, et al. ESC Scientific Document Group. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. 2018; 39(34): 3165–3241.
  372. Vahedian-Azimi A, Makvandi S, Banach M, et al. Fetal toxicity associated with statins: A systematic review and meta-analysis. Atherosclerosis. 2021; 327: 59–67.
  373. Botha TC, Pilcher GJ, Wolmarans K, et al. Statins and other lipid-lowering therapy and pregnancy outcomes in homozygous familial hypercholesterolaemia: A retrospective review of 39 pregnancies. Atherosclerosis. 2018; 277: 502–507.
  374. Döbert M, Varouxaki AN, Mu AnC, et al. Pravastatin Versus Placebo in Pregnancies at High Risk of Term Preeclampsia. Circulation. 2021; 144(9): 670–679.
  375. World Alzheimer Report 2019: Attitudes to dementia. https://www.alz.co.uk/research/world-report-2019.
  376. Chu CS, Tseng PT, Stubbs B, et al. Use of statins and the risk of dementia and mild cognitive impairment: A systematic review and meta-analysis. Sci Rep. 2018; 8(1): 5804.
  377. Zhang X, Wen J, Zhang Z. Statins use and risk of dementia: A dose-response meta analysis. Medicine (Baltimore). 2018; 97(30): e11304.
  378. Kuang ZM. Effect of Combined Antihypertensive and Lipid-Lowering Therapies on Cognitive Function: A New Treatment Strategy? Cardiol Res Pract. 2020; 2020: 1484357.
  379. Banach M, Rizzo M, Nikolic D, et al. Intensive LDL-cholesterol lowering therapy and neurocognitive function. Pharmacol Ther. 2017; 170: 181–191.
  380. Giugliano RP, Mach F, Zavitz K, et al. EBBINGHAUS Investigators. Cognitive Function in a Randomized Trial of Evolocumab. N Engl J Med. 2017; 377(7): 633–643.
  381. Abifadel M, Elbitar S, El Khoury P, et al. Living the PCSK9 adventure: from the identification of a new gene in familial hypercholesterolemia towards a potential new class of anticholesterol drugs. Curr Atheroscler Rep. 2014; 16(9): 439.
  382. Marchi C, Adorni MP, Caffarra P, et al. ABCA1- and ABCG1-mediated cholesterol efflux capacity of cerebrospinal fluid is impaired in Alzheimer's disease. J Lipid Res. 2019; 60(8): 1449–1456.
  383. Lai SW, Liao KF, Lai HC, et al. Statin use and risk of hepatocellular carcinoma. Eur J Epidemiol. 2013; 28(6): 485–492.
  384. Vahedian-Azimi A, Shojaie S, Banach M, et al. Statin therapy in chronic viral hepatitis: a systematic review and meta-analysis of nine studies with 195,602 participants. Ann Med. 2021; 53(1): 1227–1242.
  385. Banach M, Serban MC. Discussion around statin discontinuation in older adults and patients with wasting diseases. J Cachexia Sarcopenia Muscle. 2016; 7(4): 396–399.
  386. Kutner JS, Blatchford PJ, Taylor DH, et al. Safety and benefit of discontinuing statin therapy in the setting of advanced, life-limiting illness: a randomized clinical trial. JAMA Intern Med. 2015; 175(5): 691–700.
  387. Tjia J, Kutner JS, Ritchie CS, et al. Perceptions of Statin Discontinuation among Patients with Life-Limiting Illness. J Palliat Med. 2017; 20(10): 1098–1103.
  388. Melzi S, Carenzi L, Cossu MV, et al. Lipid Metabolism and Cardiovascular Risk in HIV-1 Infection and HAART: Present and Future Problems. Cholesterol. 2010; 2010: 271504.
  389. Toribio M, Fitch KV, Sanchez L, et al. Effects of pitavastatin and pravastatin on markers of immune activation and arterial inflammation in HIV. AIDS. 2017; 31(6): 797–806.
  390. Aberg JA, Sponseller CA, Ward DJ, et al. Pitavastatin versus pravastatin in adults with HIV-1 infection and dyslipidaemia (INTREPID): 12 week and 52 week results of a phase 4, multicentre, randomised, double-blind, superiority trial. Lancet HIV. 2017; 4(7): e284–e294.
  391. Aberg JA, Gallant JE, Ghanem KG, et al. Infectious Diseases Society of America. Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis. 2014; 58(1): 1–10.
  392. Hemkens LG, Bucher HC. HIV infection and cardiovascular disease. Eur Heart J. 2014; 35(21): 1373–1381.
  393. Bavinger C, Bendavid E, Niehaus K, et al. Risk of cardiovascular disease from antiretroviral therapy for HIV: a systematic review. PLoS One. 2013; 8(3): e59551.
  394. Kutner JS, Blatchford PJ, Taylor DH, et al. Safety and benefit of discontinuing statin therapy in the setting of advanced, life-limiting illness: a randomized clinical trial. JAMA Intern Med. 2015; 175(5): 691–700.
  395. Nishtala PS, Gnjidic D, Chyou T, et al. Discontinuation of statins in a population of older New Zealanders with limited life expectancy. Intern Med J. 2016; 46(4): 493–496.
  396. van der Ploeg MA, Floriani C, Achterberg WP, et al. Recommendations for (Discontinuation of) Statin Treatment in Older Adults: Review of Guidelines. J Am Geriatr Soc. 2020; 68(2): 417–425.
  397. Phelps M, Christensen DM, Gerds T, et al. Charlson Comorbidity Index Score and Risk of Severe Outcome and Death in Danish COVID-19 Patients. J Gen Intern Med. 2020; 35(9): 2801–2803.
  398. Wang X, Liu Z, Li J, et al. Impacts of Type 2 Diabetes on Disease Severity, Therapeutic Effect, and Mortality of Patients With COVID-19. J Clin Endocrinol Metab. 2020; 105(12).
  399. Sattar N, McInnes IB, McMurray JJV. Obesity Is a Risk Factor for Severe COVID-19 Infection: Multiple Potential Mechanisms. Circulation. 2020; 142(1): 4–6.
  400. Kreutz R, Algharably EAH, Azizi M, et al. Hypertension, the renin-angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. Cardiovasc Res. 2020; 116(10): 1688–1699.
  401. Fosbøl EL, Butt JH, Østergaard L, et al. Association of Angiotensin-Converting Enzyme Inhibitor or Angiotensin Receptor Blocker Use With COVID-19 Diagnosis and Mortality. JAMA. 2020; 324(2): 168–177.
  402. Lewek J, Jatczak-Pawlik I, Maciejewski M, et al. COVID-19 and cardiovascular complications - preliminary results of the LATE-COVID study. Arch Med Sci. 2021; 17(3): 818–822.
  403. Bhaskar S, Sinha A, Banach M, et al. Cytokine Storm in COVID-19-Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper. Front Immunol. 2020; 11: 1648.
  404. Reiner Ž, Hatamipour M, Banach M, et al. Statins and the COVID-19 main protease: evidence on direct interaction. Arch Med Sci. 2020; 16(3): 490–496.
  405. Radenkovic D, Chawla S, Pirro M, et al. Cholesterol in Relation to COVID-19: Should We Care about It? J Clin Med. 2020; 9(6).
  406. Daniels LB, Sitapati AM, Zhang J, et al. Relation of Statin Use Prior to Admission to Severity and Recovery Among COVID-19 Inpatients. Am J Cardiol. 2020; 136: 149–155.
  407. Saeed O, Castagna F, Agalliu I, et al. Statin Use and In‐Hospital Mortality in Patients With Diabetes Mellitus and COVID‐19. J Am Heart Assoc. 2020; 9(24): e018475.
  408. Vahedian-Azimi A, Mohammadi SM, Heidari Beni F, et al. Improved COVID-19 ICU admission and mortality outcomes following treatment with statins: a systematic review and meta-analysis. Arch Med Sci. 2021; 17(3): 579–595.
  409. Banach M, Penson PE, Fras Z, et al. FH Europe and the International Lipid Expert Panel (ILEP). Brief recommendations on the management of adult patients with familial hypercholesterolemia during the COVID-19 pandemic. Pharmacol Res. 2020; 158: 104891.
  410. Penson PE, Banach M. Nocebo/drucebo effect in statin-intolerant patients: an attempt at recommendations. Eur Heart J. 2021 [Epub ahead of print].
  411. Penson PE, Mancini GB, Toth PP, et al. Lipid and Blood Pressure Meta-Analysis Collaboration (LBPMC) Group & International Lipid Expert Panel (ILEP). Introducing the 'Drucebo' effect in statin therapy: a systematic review of studies comparing reported rates of statin-associated muscle symptoms, under blinded and open-label conditions. J Cachexia Sarcopenia Muscle. 2018; 9(6): 1023–1033.
  412. Bytyci I, Bajraktari G, Sahabkar A, Penson PE, Rysz J, Banach M. The prevalence of statin intolerance worldwide: a systematic review and meta-analysis with 4,143,517 patients. Presentation at the European Society of Cardiology Congress — Digital Experience 2021 (27th August 2021).
  413. Rosenson RS, Miller K, Bayliss M, et al. The Statin-Associated Muscle Symptom Clinical Index (SAMS-CI): Revision for Clinical Use, Content Validation, and Inter-rater Reliability. Cardiovasc Drugs Ther. 2017; 31(2): 179–186.
  414. Michalska-Kasiczak M, Sahebkar A, Mikhailidis DP, et al. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Analysis of vitamin D levels in patients with and without statin-associated myalgia - a systematic review and meta-analysis of 7 studies with 2420 patients. Int J Cardiol. 2015; 178: 111–116.
  415. Rosenson RS, Baker S, Banach M, et al. Optimizing Cholesterol Treatment in Patients With Muscle Complaints. J Am Coll Cardiol. 2017; 70(10): 1290–1301.
  416. Toth PP, Patti AM, Giglio RV, et al. Management of Statin Intolerance in 2018: Still More Questions Than Answers. Am J Cardiovasc Drugs. 2018; 18(3): 157–173.
  417. Patel J, Martin SS, Banach M. Expert opinion: the therapeutic challenges faced by statin intolerance. Expert Opin Pharmacother. 2016; 17(11): 1497–1507.
  418. Stroes E, Thompson P, Corsini A, et al. Statin-associated muscle symptoms: impact on statin therapy—European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur Heart J. 2015; 36(17): 1012–1022.
  419. Śliż D, Filipiak KJ, Naruszewicz M, et al. Differences in achieving treatment goals with statin use in various regions of Poland — 3ST-POL study results. Ann Agric Environ Med. 2016; 23(1): 116–119.
  420. Pajak A, Jankowski P, Kawecka-Jaszcz K, et al. Changes in secondary prevention of coronary artery disease in the post-discharge period over the decade 1997-2007. Results of the Cracovian Program for Secondary Prevention of Ischaemic Heart Disease and Polish parts of the EUROASPIRE II and III surveys. Kardiol Pol. 2009; 67(12): 1353–1359.
  421. Wiśniowska B, Skowron A. Evaluation of patients' adherence to statins in Poland. Curr Med Res Opin. 2011; 27(1): 99–105.
  422. Kardas P, Cieszyński J, Czech M, et al. Primary nonadherence to medication and its drivers in Poland: findings from the electronic prescription pilot analysis. Pol Arch Intern Med. 2020; 130(1): 8–16.
  423. Zongo A, Simpson S, Johnson JA, et al. Optimal threshold of adherence to lipid lowering drugs in predicting acute coronary syndrome, stroke, or mortality: A cohort study. PLoS One. 2019; 14(9): e0223062.
  424. Rodriguez F, Maron DJ, Knowles JW, et al. Association Between Intensity of Statin Therapy and Mortality in Patients With Atherosclerotic Cardiovascular Disease. JAMA Cardiol. 2017; 2(1): 47–54.
  425. Lewey J, Shrank WH, Bowry ADK, et al. Gender and racial disparities in adherence to statin therapy: a meta-analysis. Am Heart J. 2013; 165(5): 665–78, 678.e1.
  426. Mann DM, Woodward M, Muntner P, et al. Predictors of nonadherence to statins: a systematic review and meta-analysis. Ann Pharmacother. 2010; 44(9): 1410–1421.
  427. Ingersgaard MV, Helms Andersen T, Norgaard O, et al. Reasons for Nonadherence to Statins - A Systematic Review of Reviews. Patient Prefer Adherence. 2020; 14: 675–691.
  428. Lemstra M, Blackburn D, Crawley A, et al. Proportion and risk indicators of nonadherence to statin therapy: a meta-analysis. Can J Cardiol. 2012; 28(5): 574–580.
  429. Pedro-Botet J, Climent E, Benaiges D. Muscle and statins: from toxicity to the nocebo effect. Expert Opin Drug Saf. 2019; 18(7): 573–579.
  430. Kolte D, Aronow WS, Banach M. Polypills for the prevention of Cardiovascular diseases. Expert Opin Investig Drugs. 2016; 25(11): 1255–1264.
  431. Nelson AJ, Puri R, Nissen SE. Statins in a Distorted Mirror of Media. Curr Atheroscler Rep. 2020; 22(8): 37.
  432. Matthews A, Herrett E, Gasparrini A, et al. Impact of statin related media coverage on use of statins: interrupted time series analysis with UK primary care data. BMJ. 2016; 353: i3283.
  433. Jóźwiak J. Czynniki ryzyka — dyslipidemia. In: Ocena wybranych czynników ryzyka sercowo-naczyniowego w ogólnopolskiej 5-letniej prospektywnej obserwacji kohorty pacjentów POZ. Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2013.
  434. Jóźwiak J. Dyslipidemie. In: Windak A, Mastalerz-Migas A, Chlabicz S. ed. Medycyna rodzinna. Podręcznik dla lekarzy i studentów. Termedia, Poznan 2015.
  435. Bell DA, Kirke AB, Barbour R, et al. Can patients be accurately assessed for familial hypercholesterolaemia in primary care? Heart Lung Circ. 2014; 23(12): 1153–1157.
  436. Vickery AW, Bell D, Garton-Smith J, et al. Optimising the detection and management of familial hypercholesterolaemia: central role of primary care and its integration with specialist services. Heart Lung Circ. 2014; 23(12): 1158–1164.

Regulamin

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

Wydawcą serwisu jest "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl