open access

Vol 4, No 1 (2019)
Original article
Published online: 2019-02-16
Get Citation

TTX-resistant sodium currents in medial prefrontal cortex pyramidal neurons depend on extracellular Ca2+ concentration

Kinga Sławińska1, Ewa Nurowska1, Beata Dworakowska2
·
Medical Research Journal 2019;4(1):35-40.
Affiliations
  1. Laboratory of Physiology and Pathophysiology Centre for Preclinical Research and Technology (CePT) Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
  2. Department of Biophysics, Warsaw University of Life Sciences-SGGW, Warsaw, Poland, Nowoursynowska 159, 02-776 Warsaw, Poland

open access

Vol 4, No 1 (2019)
ORIGINAL ARTICLES
Published online: 2019-02-16

Abstract

Background: Previous reports reported the presence of TTX-resistant Nav1.8 and Nav1.9 sodium chan­nels in the cortex pyramidal neurons. A characteristic feature of Nav1.9 channels is activation at voltages close to — 70 mV. Therefore, they do not participate directly in the action potential but contribute to the regulation of the resting membrane potential. Their physiological role is modulation of cell excitability. The aim of the study was to investigate, with the use of patch clamp technique, the dependence of the activation thresholds of TTX–resistant sodium currents on the concentration of extracellular calcium in medial prefrontal cortex pyramidal neurons in rats.
Results: The recorded values of the threshold of the voltage-dependent sodium currents were in the range of -65 mV to -75 mV. This suggests that the sodium currents may result from the presence of Nav1.9 channels in the rat pyramidal neurons. The threshold for the activation of sodium currents depended on the concentration of Ca2+. Increasing the concentration of calcium ions in the extracellular solution by 5 mM caused the depolarizing shift in the activation potential by about 10 mV. The effect of calcium ion concentration on the potential of TTX-resistant currents activation suggests that Nav1.9 channels are modulated by extracellular Ca2+ concentration.
Conclusions: The study has experimentally confirmed that TTX-resistant channels are present in the cell membrane of the rat prefrontal cortex pyramidal neurons and may, therefore, take a physiological role in the conductivity of sodium currents in a manner dependent on the concentration of extracellular ions.

Abstract

Background: Previous reports reported the presence of TTX-resistant Nav1.8 and Nav1.9 sodium chan­nels in the cortex pyramidal neurons. A characteristic feature of Nav1.9 channels is activation at voltages close to — 70 mV. Therefore, they do not participate directly in the action potential but contribute to the regulation of the resting membrane potential. Their physiological role is modulation of cell excitability. The aim of the study was to investigate, with the use of patch clamp technique, the dependence of the activation thresholds of TTX–resistant sodium currents on the concentration of extracellular calcium in medial prefrontal cortex pyramidal neurons in rats.
Results: The recorded values of the threshold of the voltage-dependent sodium currents were in the range of -65 mV to -75 mV. This suggests that the sodium currents may result from the presence of Nav1.9 channels in the rat pyramidal neurons. The threshold for the activation of sodium currents depended on the concentration of Ca2+. Increasing the concentration of calcium ions in the extracellular solution by 5 mM caused the depolarizing shift in the activation potential by about 10 mV. The effect of calcium ion concentration on the potential of TTX-resistant currents activation suggests that Nav1.9 channels are modulated by extracellular Ca2+ concentration.
Conclusions: The study has experimentally confirmed that TTX-resistant channels are present in the cell membrane of the rat prefrontal cortex pyramidal neurons and may, therefore, take a physiological role in the conductivity of sodium currents in a manner dependent on the concentration of extracellular ions.

Get Citation

Keywords

sodium currents TTX-resistant, Nav1.9 ion channel, pyramidal neurons, patch-clamp

About this article
Title

TTX-resistant sodium currents in medial prefrontal cortex pyramidal neurons depend on extracellular Ca2+ concentration

Journal

Medical Research Journal

Issue

Vol 4, No 1 (2019)

Article type

Original article

Pages

35-40

Published online

2019-02-16

Page views

954

Article views/downloads

900

DOI

10.5603/MRJ.a2019.0008

Bibliographic record

Medical Research Journal 2019;4(1):35-40.

Keywords

sodium currents TTX-resistant
Nav1.9 ion channel
pyramidal neurons
patch-clamp

Authors

Kinga Sławińska
Ewa Nurowska
Beata Dworakowska

References (39)
  1. Dib-Hajj SD, Black JA, Waxman SG. NaV1.9: a sodium channel linked to human pain. Nat Rev Neurosci. 2015; 16(9): 511–519.
  2. Fang X, Djouhri L, Black JA, et al. The presence and role of the tetrodotoxin-resistant sodium channel Na(v)1.9 (NaN) in nociceptive primary afferent neurons. J Neurosci. 2002; 22(17): 7425–7433.
  3. Hockley JRF, Winchester WJ, Bulmer DC. The voltage-gated sodium channel NaV 1.9 in visceral pain. Neurogastroenterol Motil. 2016; 28(3): 316–326.
  4. Huang J, Han C, Estacion M, et al. PROPANE Study Group. Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy. Brain. 2014; 137(Pt 6): 1627–1642.
  5. Phatarakijnirund V, Mumm S, McAlister WH, et al. Congenital insensitivity to pain: Fracturing without apparent skeletal pathobiology caused by an autosomal dominant, second mutation in SCN11A encoding voltage-gated sodium channel 1.9. Bone. 2016; 84: 289–298.
  6. Herzog RI, Cummins TR, Waxman SG. Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J Neurophysiol. 2001; 86(3): 1351–1364.
  7. Cardoso FC, Lewis RJ. Sodium channels and pain: from toxins to therapies. Br J Pharmacol. 2018; 175(12): 2138–2157.
  8. Kurowski P, Gawlak M, Szulczyk P. Muscarinic receptor control of pyramidal neuron membrane potential in the medial prefrontal cortex (mPFC) in rats. Neuroscience. 2015; 303: 474–488.
  9. Gawlak M, Szulczyk B, Berłowski A, et al. Age-dependent expression of Nav1.9 channels in medial prefrontal cortex pyramidal neurons in rats. Dev Neurobiol. 2017; 77(12): 1371–1384.
  10. Szulczyk B, Nurowska E. Valproic acid inhibits TTX-resistant sodium currents in prefrontal cortex pyramidal neurons. Biochem Biophys Res Commun. 2017; 491(2): 291–295.
  11. Erdeve O, Atasay B, Arsan S, et al. Hypocalcemic seizure due to congenital rickets in the first day of life. Turk J Pediatr. 2007; 49(3): 301–303.
  12. Tsai PL, Lian LM, Chen WH. Hypocalcemic seizure mistaken for idiopathic epilepsy in two cases of DiGeorge syndrome (chromosome 22q11 deletion syndrome). Acta Neurol Taiwan. 2009; 18(4): 272–275.
  13. Milman S, Epstein EJ. Proton pump inhibitor-induced hypocalcemic seizure in a patient with hypoparathyroidism. Endocr Pract. 2011; 17(1): 104–107.
  14. El Asri AC, Akhaddar A, Baallal H, et al. Hypocalcemic seizure in adult: rare cause of lumbar fracture. Clin Neurol Neurosurg. 2012; 114(6): 738–740.
  15. Kidwell KS, Kopp WE, Albano EA, et al. J Pediatr Hematol Oncol. 2014; 36(4): 305–307.
  16. Korkmaz HA, Dizdarer C, Ecevit CO. Hypocalcemic seizure in an adolescent with Down syndrome: a manifestation of unrecognized celiac disease. Turk J Pediatr. 2013; 55(5): 536–538.
  17. Ali FE, Al-Bustan MA, Al-Busairi WA, et al. Loss of seizure control due to anticonvulsant-induced hypocalcemia. Ann Pharmacother. 2004; 38(6): 1002–1005.
  18. Kokot F. Zaburzenia Gospodarki Wodno-Elektrolitowej i Kwasowo-Zasadowej. PZWL, Wydanie II, Warszawa. ; 2007.
  19. Han P, Trinidad BJ, Shi J. Hypocalcemia-induced seizure: demystifying the calcium paradox. ASN Neuro. 2015; 7(2).
  20. Roper SN, Obenaus A, Dudek FE, et al. Osmolality and nonsynaptic epileptiform bursts in rat CA1 and dentate gyrus. Ann Neurol. 1992; 31(1): 81–85.
  21. Bikson M, Baraban SC, Durand DM. Conditions sufficient for nonsynaptic epileptogenesis in the CA1 region of hippocampal slices. J Neurophysiol. 2002; 87(1): 62–71.
  22. Wang T, Wang J, Cottrell JE, et al. Small physiologic changes in calcium and magnesium alter excitability and burst firing of CA1 pyramidal cells in rat hippocampal slices. J Neurosurg Anesthesiol. 2004; 16(3): 201–209.
  23. Isaev D, Ivanchick G, Khmyz V, et al. Surface charge impact in low-magnesium model of seizure in rat hippocampus. J Neurophysiol. 2012; 107(1): 417–423.
  24. Sławińska K. Charakterystyka prądów TTX-opornych w neuronach piramidowych kory przedczołowej szczura. Praca magisterska. Warszawski Uniwersytet Medyczny. 2016.
  25. Boccaccio A, Moran O, Conti F. Calcium dependent shifts of Na+ channel activation correlated with the state dependence of calcium-binding to the pore. Eur Biophys J. 1998; 27(6): 558–566.
  26. Hille B. Charges and potentials at the nerve surface. Divalent ions and pH. J Gen Physiol. 1968; 51(2): 221–236.
  27. Hille B, Woodhull AM, Shapiro BI. Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Philos Trans R Soc Lond B Biol Sci. 1975; 270(908): 301–318.
  28. Armstrong CM, Cota G. Calcium ion as a cofactor in Na channel gating. Proc Natl Acad Sci U S A. 1991; 88(15): 6528–6531.
  29. Enyeart JJ, Liu H, Enyeart JA. Calcium-dependent inhibition of adrenal TREK-1 channels by angiotensin II and ionomycin. Am J Physiol Cell Physiol. 2011; 301(3): C619–C629.
  30. Lu B, Zhang Qi, Wang H, et al. Extracellular calcium controls background current and neuronal excitability via an UNC79-UNC80-NALCN cation channel complex. Neuron. 2010; 68(3): 488–499.
  31. Riley M, Constantinidis C. Role of Prefrontal Persistent Activity in Working Memory. Frontiers in Systems Neuroscience. 2016; 9.
  32. Peters J, Kalivas PW, Quirk GJ. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem. 2009; 16(5): 279–288.
  33. Ohashi M, Saitoh A, Yamada M, et al. Activation of the prelimbic medial prefrontal cortex induces anxiety-like behaviors via N-Methyl-D-aspartate receptor-mediated glutamatergic neurotransmission in mice. J Neurosci Res. 2014; 92(8): 1044–1053.
  34. Goldman-Rakic PS. The physiological approach: Functional architecture of working memory and disordered cognition in schizophrenia. In: Goldman-Rakic PS. ed. Biological Psychiatry.Vol 46. 1999: 650–661.
  35. Jaracz J. Anatomia depresji w świetle wyników badań neuroobrazowych. Psychiatr Pol. 2008; 42(6): 875–888.
  36. Kałwa A. Zaburzenia funkcji poznawczych w chorobie afektywnej dwubiegunowej. Psychiatr Pol. 2011; 45(6): 901–910.
  37. Lehner M, Wisłowska-Stanek A, Płaznik A. Wygaszanie reakcji emocjonalnej jako nowy cel farmakoterapii zaburzeń lękowych. Psychiatr Pol. 2009; 43(6): 639–653.
  38. Radochoński M, Perenc ARA. Neurobiologiczne uwarunkowania antyspołecznych zaburzeń zachowania. Przegląd Med Uniw Rzesz. 2009; 4: 405–410.
  39. Negrón-Oyarzo I, Lara-Vásquez A, Palacios-García I, et al. Schizophrenia and reelin: a model based on prenatal stress to study epigenetics, brain development and behavior. Biol Res. 2016; 49: 16.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., ul. Świętokrzyska 73, 80–180 Gdańsk, Poland
tel.:+48 58 320 94 94, fax:+48 58 320 94 60, e-mail: viamedica@viamedica.pl