open access

Vol 4, No 1 (2019)
ORIGINAL ARTICLES
Published online: 2019-01-24
Get Citation

Myonectin serum concentration changes after short-term physical activity among young, healthy people

Mikołaj Kamiński, Joanna Kippen, Anna Gomulska, Justyna Smyrak, Marcin Karolewski, Lena Bielawska, Ewa Wysocka, Maciej Cymerys
DOI: 10.5603/MRJ.a2019.0002
·
Medical Research Journal 2019;4(1):41-45.

open access

Vol 4, No 1 (2019)
ORIGINAL ARTICLES
Published online: 2019-01-24

Abstract

Background: Myonectin is a myokine secreted by skeletal muscles in response to physical activity (PhA)
in rodents. It was shown that myonectin may be positively associated with insulin resistance parameters.
The aim of the study was to evaluate changes in the concentration of myonectin after short-term PhA.
Methods: A total of 29 young, healthy volunteers, were included in the study. Each participant completed
a life-style questionnaire, underwent a physical examination with anthropometric measurement followed
by a treadmill test according to theBruce protocol. Blood samples were collected before and after PhA.
An ELISA Assay was used to investigate the myonectin serum level.
Results: The myonectin serum level did not change significantly after PhA (0.62[0.14-2.9] vs. 1.08[0.15-2.44] ng/ml; p=0.84). Before PhA the myonectin serum level differed significantly between men and women (respectively: 3.92[2.24-5.30] vs. 0.56[0.15-1.75] ng/ml; p=0.02). Before PhA it had a positive association with weight, BMI, serum creatinine and uremic acid (p < 0.05). The change in the level of myonectin serum after PhA had negative associations with weight, BMI, fasting insulin level and HOMA-IR (p < 0.05).
Conclusions: Myonectin serum concentration does not change after short-term physical activity among
young, healthy people. Changes in the myonectin serum level after short-term physical activity may be
associated with fasting insulin resistance.

Abstract

Background: Myonectin is a myokine secreted by skeletal muscles in response to physical activity (PhA)
in rodents. It was shown that myonectin may be positively associated with insulin resistance parameters.
The aim of the study was to evaluate changes in the concentration of myonectin after short-term PhA.
Methods: A total of 29 young, healthy volunteers, were included in the study. Each participant completed
a life-style questionnaire, underwent a physical examination with anthropometric measurement followed
by a treadmill test according to theBruce protocol. Blood samples were collected before and after PhA.
An ELISA Assay was used to investigate the myonectin serum level.
Results: The myonectin serum level did not change significantly after PhA (0.62[0.14-2.9] vs. 1.08[0.15-2.44] ng/ml; p=0.84). Before PhA the myonectin serum level differed significantly between men and women (respectively: 3.92[2.24-5.30] vs. 0.56[0.15-1.75] ng/ml; p=0.02). Before PhA it had a positive association with weight, BMI, serum creatinine and uremic acid (p < 0.05). The change in the level of myonectin serum after PhA had negative associations with weight, BMI, fasting insulin level and HOMA-IR (p < 0.05).
Conclusions: Myonectin serum concentration does not change after short-term physical activity among
young, healthy people. Changes in the myonectin serum level after short-term physical activity may be
associated with fasting insulin resistance.

Get Citation

Keywords

myonectin, physical, activity, insulin, resistance, treadmill, homa-ir

About this article
Title

Myonectin serum concentration changes after short-term physical activity among young, healthy people

Journal

Medical Research Journal

Issue

Vol 4, No 1 (2019)

Pages

41-45

Published online

2019-01-24

DOI

10.5603/MRJ.a2019.0002

Bibliographic record

Medical Research Journal 2019;4(1):41-45.

Keywords

myonectin
physical
activity
insulin
resistance
treadmill
homa-ir

Authors

Mikołaj Kamiński
Joanna Kippen
Anna Gomulska
Justyna Smyrak
Marcin Karolewski
Lena Bielawska
Ewa Wysocka
Maciej Cymerys

References (12)
  1. Park SY, Choi JH, Ryu HSu, et al. C1q tumor necrosis factor alpha-related protein isoform 5 is increased in mitochondrial DNA-depleted myocytes and activates AMP-activated protein kinase. J Biol Chem. 2009; 284(41): 27780–27789.
  2. Seldin MM, Peterson JM, Byerly MS, et al. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J Biol Chem. 2012; 287(15): 11968–11980.
  3. Sharma N, Castorena CM, Cartee GD. Greater insulin sensitivity in calorie restricted rats occurs with unaltered circulating levels of several important myokines and cytokines. Nutr Metab (Lond). 2012; 9(1): 90.
  4. Toloza FJK, Mantilla-Rivas JO, Pérez-Matos MC, et al. Plasma Levels of Myonectin But Not Myostatin or Fibroblast-Derived Growth Factor 21 Are Associated with Insulin Resistance in Adult Humans without Diabetes Mellitus. Front Endocrinol (Lausanne). 2018; 9: 5.
  5. Lim S, Choi SH, Koo BoK, et al. Effects of aerobic exercise training on C1q tumor necrosis factor α-related protein isoform 5 (myonectin): association with insulin resistance and mitochondrial DNA density in women. J Clin Endocrinol Metab. 2012; 97(1): E88–E93.
  6. Koivisto V, Yki-Järvinen H, DeFronzo R. Physical training and insulin sensitivity. Diabetes / Metabolism Reviews. 1986; 1(4): 445–481.
  7. Hagströmer M, Oja P, Sjöström M. The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr. 2006; 9(6): 755–762.
  8. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28(7): 412–419.
  9. Bruce R. Methods of exercise testing. The American Journal of Cardiology. 1974; 33(6): 715–720.
  10. Baxmann AC, Ahmed MS, Marques NC, et al. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin J Am Soc Nephrol. 2008; 3(2): 348–354.
  11. Maiuolo J, Oppedisano F, Gratteri S, et al. Regulation of uric acid metabolism and excretion. Int J Cardiol. 2016; 213: 8–14.
  12. Capurso C, Capurso A. From excess adiposity to insulin resistance: the role of free fatty acids. Vascul Pharmacol. 2012; 57(2-4): 91–97.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.