open access

Vol 3, No 2 (2018)
Review article
Published online: 2018-07-31
Get Citation

Ecophysiological determinants of the human skeletal system

Piotr Kamiński12, Agnieszka Wiśniewska, Leszek Jerzak, Paweł Żuchowski, Sławomir Jeka, Brendan P. Kavanagh, Wojciech Kozera, Alina Woźniak
·
Medical Research Journal 2018;3(2):47-54.
Affiliations
  1. 1Nicolaus Copernicus University, Collegium Medicum, Department of Medical Biology, Department of Ecology and Environmental Protection, Bydgoszcz, Poland
  2. 2University of Zielona Góra, Faculty of Biological Sciences, Department of Biotechnology, Zielona Góra, Poland

open access

Vol 3, No 2 (2018)
REVIEW ARTICLES
Published online: 2018-07-31

Abstract

This review assessed relationships between external factors and the level of joint pathology (hip, knee,

ankle, elbow, shoulder, hands and feet) in humans with dysplastic arthritis, psoriatic arthritis, rheumatoid

arthritis, Sjögren’s syndrome, systemic lupus erythematosus, systemic sclerosis, degenerative joint disease,

ankylosing spondylitis, osteoporosis, osteomalacia and gout. The accumulation of physiologically

different chemical elements in different types of bones in humans of different ages allows for a more

accurate assessment of the causal quoted response from parallel biochemical systems. These allow

a better understanding of the link between exposure arising from smoking, alcohol, drugs, diseases,

heredity, effects of amalgam dental fillings, diet, food preferences, chemical elements, occupational and

environmental exposure to toxicants, lipoperoxidation and pro-antioxidant reactions.

Physiology of the osteoarticular system determines what is responsible for bone and long-term body

accumulation of toxic metals, which may be involved in the pathogenesis of bone diseases. While relationships

between stressors, antioxidant system and bone condition predict potential risks in certain

abnormalities and change oxidative stress. Elemental instability in the environment combined with salinity,

acidity, redox potential and local changes in hydrochemical balance, enhances adverse effects. Processes

of remodeling and bone mineralization continue throughout life and therefore may be a determinant of

long-term accumulation of toxicants.

Environmental issues affecting bioaccumulation of chemical elements in the osteoarticular system in humans

is poorly understood. Alloplastic procedures, including the need for prostheses, supplemented by

image layouts oxidative enzyme activities, as well as lipoperoxidation and the level of stress proteins, give

a complete picture of skeletal response to external stressors. Simultaneously, the analysis of the impact

of stressors on bones allows a more accurate tracing of causal quoted responses from parallel reactions.

They have a direct relationship with stressors and affect the nature and degree of responses and defense

capabilities. Thus they have a role in the diagnosis of diseases of the skeletal system.

Abstract

This review assessed relationships between external factors and the level of joint pathology (hip, knee,

ankle, elbow, shoulder, hands and feet) in humans with dysplastic arthritis, psoriatic arthritis, rheumatoid

arthritis, Sjögren’s syndrome, systemic lupus erythematosus, systemic sclerosis, degenerative joint disease,

ankylosing spondylitis, osteoporosis, osteomalacia and gout. The accumulation of physiologically

different chemical elements in different types of bones in humans of different ages allows for a more

accurate assessment of the causal quoted response from parallel biochemical systems. These allow

a better understanding of the link between exposure arising from smoking, alcohol, drugs, diseases,

heredity, effects of amalgam dental fillings, diet, food preferences, chemical elements, occupational and

environmental exposure to toxicants, lipoperoxidation and pro-antioxidant reactions.

Physiology of the osteoarticular system determines what is responsible for bone and long-term body

accumulation of toxic metals, which may be involved in the pathogenesis of bone diseases. While relationships

between stressors, antioxidant system and bone condition predict potential risks in certain

abnormalities and change oxidative stress. Elemental instability in the environment combined with salinity,

acidity, redox potential and local changes in hydrochemical balance, enhances adverse effects. Processes

of remodeling and bone mineralization continue throughout life and therefore may be a determinant of

long-term accumulation of toxicants.

Environmental issues affecting bioaccumulation of chemical elements in the osteoarticular system in humans

is poorly understood. Alloplastic procedures, including the need for prostheses, supplemented by

image layouts oxidative enzyme activities, as well as lipoperoxidation and the level of stress proteins, give

a complete picture of skeletal response to external stressors. Simultaneously, the analysis of the impact

of stressors on bones allows a more accurate tracing of causal quoted responses from parallel reactions.

They have a direct relationship with stressors and affect the nature and degree of responses and defense

capabilities. Thus they have a role in the diagnosis of diseases of the skeletal system.

Get Citation

Keywords

osteoarticular system; bone tissue; antioxidant enzymes; toxic metals; environmental stress; total hip replacement

About this article
Title

Ecophysiological determinants of the human skeletal system

Journal

Medical Research Journal

Issue

Vol 3, No 2 (2018)

Article type

Review article

Pages

47-54

Published online

2018-07-31

Page views

923

Article views/downloads

1001

DOI

10.5603/MRJ.2018.0009

Bibliographic record

Medical Research Journal 2018;3(2):47-54.

Keywords

osteoarticular system
bone tissue
antioxidant enzymes
toxic metals
environmental stress
total hip replacement

Authors

Piotr Kamiński
Agnieszka Wiśniewska
Leszek Jerzak
Paweł Żuchowski
Sławomir Jeka
Brendan P. Kavanagh
Wojciech Kozera
Alina Woźniak

References (94)
  1. Roux S, Brown J. Osteoclast Apoptosis in Rheumatic Diseases Characterized by a High Level of Bone Resorption (Osteoporosis, Rheumatoid Arthritis, Myeloma and Pagets Disease of Bone). Current Rheumatology Reviews. 2009; 5(2): 98–110.
  2. Feng Xu, McDonald JM. Disorders of bone remodeling. Annu Rev Pathol. 2011; 6: 121–145.
  3. Valković V, Jakšić M, Krmpotić-Nemanić J. Distribution of trace elements within bones in nasal cavity and labyrinth in humans. Biol Trace Elem Res. 1987; 12(1): 375–382.
  4. Samudralwar DL, Robertson JD. Determination of major and trace elements in bones by simultaneous PIXE/PIGE analysis. Journal of Radioanalytical and Nuclear Chemistry Articles. 1993; 169(1): 259–267.
  5. Kwapulinski J, Brodziak B, Bogunia M. Relative changes of elements in human osseous tissue. Bull Environ Contam Toxicol. 2003; 70(6): 1089–1096.
  6. Zaichick V, Zaichick S, Karandashev V, et al. The effect of age and gender on Al, B, Ba, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Sr, V, and Zn contents in rib bone of healthy humans. Biol Trace Elem Res. 2009; 129(1-3): 107–115.
  7. Aras NK, Yilmaz G, Alkan S, et al. Trace elements in human bone determined by neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry. 1999; 239(1): 79–86.
  8. Brodziak-Dopierala B, Kwapulinski J, Kusz D, et al. Interactions between concentrations of chemical elements in human femoral heads. Arch Environ Contam Toxicol. 2009; 57(1): 203–210.
  9. Filip R. 2007. Własności strukturalne i materiałowe tkanki kostnej a ryzyko złamań. Reumatologia 47. ; 3: 154–157.
  10. Przepierka-Będzak H. 2007. Wartość badań oceniających gęstość mineralną kości i metabolizm kostny u chorych na zesztywniające zapalenie stawów kręgosłupa w wykrywaniu osteoporozy. Rocz. Pom. Akad. Med. w Szczecinie 53. ; 3: 39–47.
  11. Ajduković Z, Dimić A, Stanković S, et al. [Mineral substances in the bone tissue and blood of patients with osteoporosis]. Med Pregl. 2009; 62(9-10): 402–406.
  12. Watts NB. Clinical utility of biochemical markers of bone remodeling. Clin Chem. 1999; 45(8 Pt 2): 1359–1368.
  13. Leidig-Bruckner G, Ziegler R. Diabetes mellitus a risk for osteoporosis? Exp Clin Endocrinol Diabetes. 2001; 109 Suppl 2: S493–S514.
  14. Parada-Turska J, Majdan M. [The musculoskeletal system in diabetic patients]. Postepy Hig Med Dosw (Online). 2005; 59: 236–244.
  15. Chernyshova IV, Drozdov VN, Vinokurova LV, et al. [Disorder of mineral density of the bone tissue in patients with chronic pancreatitis]. Eksp Klin Gastroenterol. 2008(7): 29–32.
  16. Ruf KM, Clifford T. Management of chronic kidney disease-mineral bone disorder. Orthopedics. 2010; 33(2): 98–101.
  17. Hrycaj PZ, Łącki JK. 2002. Od zwyrodnienia do zapalenia – współczesne poglądy na patogenezę choroby zwyrodnieniowej stawów. Nowa Med. ; 2.
  18. Sierakowski S. 2002. Choroba zwyrodnieniowa stawów na progu XXI wieku. Nowa Med. ; 2.
  19. Ścibior D, Czeczot H. 2006. Katalaza – budowa, właściwości, funkcje. Post Hig Med Dośw. ; 60: 170–180.
  20. Kubiak K, Klimczak A, Dziki Ł, et al. [Influence of copper (II) complex on the activity of selected oxidative enzymes]. Pol Merkur Lekarski. 2010; 28(163): 22–25.
  21. Augustyniak A, Skrzydlewska E. [Antioxidative abilities during aging]. Postepy Hig Med Dosw (Online). 2004; 58: 194–201.
  22. Mrowicka M, Gałecka E, Miller E, et al. [The influence of degenerative changes on the production of free radicals and the lipid peroxidation at the patients after alloplasty of the hip joint]. Pol Merkur Lekarski. 2008; 25(146): 145–149.
  23. Mrowicka M, Garncarek P, Bortnik K, et al. [Activity of superoxide dismutase (CuZn-SOD) in erythrocytes of patients after hips alloplasty]. Pol Merkur Lekarski. 2008; 24(143): 396–398.
  24. Mrowicka M, Garncarek P, Gałecka E, et al. 2008c. Activity of catalase and glutathine peroxidase in erythrocytes of patients after hips alloplastic. Kwart Ortop. ; 2: 227–234.
  25. Mrowicka M, Garncarek P, Miller E, et al. 2010. Wpływ melatoniny na aktywność dysmutazy ponadtlenkowej (CuZn-SOD) w krwinkach czerwonych chorych w okresie hipokinezji krótko i i długoterminowej. Wiad Lek LXIII. ; 1: 3–9.
  26. Gaweł S, Wardas M, Niedworok E, et al. [Malondialdehyde (MDA) as a lipid peroxidation marker]. Wiad Lek. 2004; 57(9-10): 453–455.
  27. Kędziora J, Buczyński A. 1996. Antioxidative enzymem activites ans lipid peroxidation indicators in blond platelets during bed rest. Int. J. Occup. Med. Environ. Health 9. ; 1: 45–51.
  28. Buczyński A, Kowalski W, Pietras R. 1999. Lipid peroxidation and cellular antioxidative systems in the organism subjected to limited motor activity. Przegl Wojsk Med. ; 41: 24–31.
  29. Altindag O, Erel O, Soran N, et al. Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int. 2008; 28(4): 317–321.
  30. Samborski P, Naskręt D, Araszkiewicz A, et al. Assessment of skin autofluorescence as a marker of advanced glycation end product accumulation in type 1 diabetes. Pol Arch Med Wewn. 2011; 121(3): 67–72.
  31. Traczyk WZ, Trzebski A. red.). 2001. Fizjologia człowieka z elementami fizjologii stosowanej i klinicznej. PZWL, Warszawa. ; 789: pp.
  32. Sirola J, Kröger H, Honkanen R, et al. Smoking may impair the bone protective effects of nutritional calcium: a population-based approach. J Bone Miner Res. 2003; 18(6): 1036–1042.
  33. Wiśniewska A. 2014. Wpływ pierwiastków chemicznych na układ kostny i enzymatyczną barierę antyoksydacyjną u człowieka. Ph.D. Thesis, CM UMK, Bydgoszcz. ; 200: pp.
  34. Głogowska-Szeląg J, Marek B, Nowak M. 2010. Choroba zwyrodnieniowa stawów a preparaty imbiru. Acta Balneol LII. ; 2: 103–106.
  35. Kontny E. 2011. Patogeneza reumatoidalnego zapalenia stawów. Część I – odpowiedź nabyta, uwarunkowania genetyczne i środowiskowe. Reumatologia, 49. ; 1: 47–54.
  36. Gravallese E, Goldring S. Cellular mechanisms and the role of cytokines in bone erosions in rheumatoid arthritis. Arthritis & Rheumatism. 2000; 43(10): 2143–2151, doi: 10.1002/1529-0131(200010)43:10<2143::aid-anr1>3.3.co;2-j.
  37. Kokot F. ed.) 2004. Choroby wewnętrzne. PZWL, Warszawa. ; 476: pp.
  38. Majithia V, Geraci SA. Rheumatoid arthritis: diagnosis and management. Am J Med. 2007; 120(11): 936–939.
  39. Deal C. Bone loss in rheumatoid arthritis: systemic, periarticular, and focal. Curr Rheumatol Rep. 2012; 14(3): 231–237.
  40. Dobrogowski J, Wordliczek J, Istrati J. 2012. Zespoły bólowe narządu ruchu. Bóle kręgosłupa Wyd PZWL. : Warszawa.
  41. Dega W, Senger A, Król J. 1996. Ortopedia i rehabilitacja. Wyd. PZWL, Warszawa. ; 575: pp.
  42. Malemud CJ, Islam N, Haqqi TM. Pathophysiological mechanisms in osteoarthritis lead to novel therapeutic strategies. Cells Tissues Organs. 2003; 174(1-2): 34–48.
  43. Buckwalter J, Saltzman C, Brown T. The Impact of Osteoarthritis. Clinical Orthopaedics and Related Research. 2004; 427: S6–S15.
  44. Lis K, Odrowąż-Sypniewska G, Nowacki W. 2005. Ocena stężenia IGF-1 w surowicy krwi i płynie stawowym u kobiet ze zmianami zwyrodnieniowymi stawu biodrowego o różnej etiologii. Chirurgia Narządów Ruchu Ortop. Pol 70. ; 6: 407.
  45. Naylor K, Eastell R. Bone turnover markers: use in osteoporosis. Nat Rev Rheumatol. 2012; 8(7): 379–389.
  46. Genovese M. Treatment of Rheumatoid Arthritis. Kelley's Textbook of Rheumatology. 2009: 1119–1143.
  47. Caracchini G, Cavalli L. Severe osteoporosis: diagnosis of femoral fractures. Clin Cases Miner Bone Metab. 2010; 7(2): 97–101.
  48. El Maghraoui A, Borderie D, Cherruau B, et al. Osteoporosis, body composition, and bone turnover in ankylosing spondylitis. J Rheumatol. 1999; 26(10): 2205–2209.
  49. Kanis JA, Glüer CC. An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int. 2000; 11(3): 192–202.
  50. Rabiega D, Woźniak J, Olejniczak T, et al. 2000. Osteoporoza – epidemiologia, patogeneza, diagnostyka i leczenie. Przew Lek. ; 9: 39–46.
  51. Geusens P, Lems WF. Osteoimmunology and osteoporosis. Arthritis Res Ther. 2011; 13(5): 242.
  52. Roux C. Osteoporosis in inflammatory joint diseases. Osteoporos Int. 2011; 22(2): 421–433.
  53. Goldacre MJ, Roberts SE, Yeates D. Mortality after admission to hospital with fractured neck of femur: database study. BMJ. 2002; 325(7369): 868–869.
  54. Parfitt AM, Qiu S, Rao DS. The mineralization index--a new approach to the histomorphometric appraisal of osteomalacia. Bone. 2004; 35(1): 320–325.
  55. Bhambri R, Naik V, Malhotra N, et al. Changes in bone mineral density following treatment of osteomalacia. J Clin Densitom. 2006; 9(1): 120–127.
  56. Starek A. 2007. Toksykologia narządowa. PZWL, Warszawa. ; 438: pp.
  57. GRAYZEL AI, LIDDLE L, SEEGMILLER JE. Diagnostic significance of hyperuricemia in arthritis. N Engl J Med. 1961; 265: 763–768.
  58. Mandell BF. Clinical manifestations of hyperuricemia and gout. Cleve Clin J Med. 2008; 75 Suppl 5: S5–S8.
  59. Gińdzieńska-Sieśkiewicz E, Sierakowski S, Domysławska I, et al. 2010. Dna moczanowa – aktualne spojrzenie na diagnostykę i leczenie. Reumatologia, 48. ; 6: 425.
  60. Majdan M, Borys O. [Gout and comorbidities associated with hyperuricemia]. Ann Acad Med Stetin. 2010; 56 Suppl 1: 34–39.
  61. Seifert M, Watkins B. ROLE OF DIETARY LIPID AND ANTIOXIDANTS IN BONE METABOLISM. Nutrition Research. 1997; 17(7): 1209–1228.
  62. Theppeang K, Glass TA, Bandeen-Roche K, et al. Associations of bone mineral density and lead levels in blood, tibia, and patella in urban-dwelling women. Environ Health Perspect. 2008; 116(6): 784–790.
  63. Alfvén T, Järup L, Elinder CG. Cadmium and lead in blood in relation to low bone mineral density and tubular proteinuria. Environ Health Perspect. 2002; 110(7): 699–702.
  64. Patrick L. Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev. 2003; 8(2): 106–128.
  65. Akesson A, Bjellerup P, Lundh T, et al. Cadmium-induced effects on bone in a population-based study of women. Environ Health Perspect. 2006; 114(6): 830–834.
  66. Nyhäll-Wåhlin BM, Petersson IF, Nilsson JA, et al. BARFOT study group. High disease activity disability burden and smoking predict severe extra-articular manifestations in early rheumatoid arthritis. Rheumatology (Oxford). 2009; 48(4): 416–420.
  67. Jakubowski M, Muszer J, Slota P. 1995. The risk of exposure on cadmium in chosen the bronches of industry. Med Pracy. ; 46: 109–122.
  68. Czeczot H, Skrzycki M. [Cadmium--element completely unnecessary for the organism]. Postepy Hig Med Dosw (Online). 2010; 64: 38–49.
  69. Cuypers A, Plusquin M, Remans T, et al. Cadmium stress: an oxidative challenge. Biometals. 2010; 23(5): 927–940.
  70. Moulis JM, Thévenod F. New perspectives in cadmium toxicity: an introduction. Biometals. 2010; 23(5): 763–768.
  71. Graczyk A. 1992. Glin – nowa trucizna środowiska. Bibl. Monit. Środ. 999, Warszawa. ; 87: pp.
  72. Colbin A. 2000. Osteoporoza. Jak leczyć ją dietą. Wyd. Książka i Wiedza, Warszawa. ; 272: pp.
  73. Scala J. 2000. Artretyzm. Jak leczyć go dietą. Książka i Wiedza, Warszawa. ; 274: pp.
  74. Theodosakis J, Buff S. 2011. Artretyzm: zwyrodnieniowa choroba stawów, reumatoidalne zapalenie stawów: nowe sposoby leczenia. Klub Dla Ciebie, Warszawa. ; 270: pp.
  75. Pieleszek A, Stanosz S. 1994. Wpływ dwusiarczku węgla na występowanie przekwitania u kobiet. Med Pracy. ; 45: 383–391.
  76. Altzitzoglou T, LaRosa JJ, Nicholl C. Measurement of 90Sr in bone ash. Appl Radiat Isot. 1998; 49(9-11): 1313–1317.
  77. Pilviö R, LaRosa JJ, Mouchel D, et al. Measurement of low-level radioactivity in bone ash. Journal of Environmental Radioactivity. 1999; 43(3): 343–356.
  78. Rapuri PB, Gallagher JC, Kinyamu HK, et al. Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. Am J Clin Nutr. 2001; 74(5): 694–700.
  79. Hamada Y, Fujii H, Fukagawa M. Role of oxidative stress in diabetic bone disorder. Bone. 2009; 45: S35–S38.
  80. Barrère F, van Blitterswijk CA, de Groot K. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomedicine. 2006; 1(3): 317–332.
  81. Carlens C, Hergens MP, Grunewald J, et al. Smoking, use of moist snuff, and risk of chronic inflammatory diseases. Am J Respir Crit Care Med. 2010; 181(11): 1217–1222.
  82. Brodziak-Dopierała B, Kwapuliński J, Sobczyk K, et al. The occurrence of nickel and other elements in tissues of the hip joint. Ecotoxicol Environ Saf. 2011; 74(4): 630–635.
  83. Spodaryk K. 2002. Patologia narządu ruchu. PZWL, Warszwa. ; 285: pp.
  84. Matyska-Piekarska E, Łuszczewski A, Łacki J, et al. [The role of oxidative stress in the etiopathogenesis of rheumatoid arthritis]. Postepy Hig Med Dosw (Online). 2006; 60: 617–623.
  85. Skólmowska M, Kmieć M. [Antioxidant enzymosomes - properties and application]. Postepy Hig Med Dosw (Online). 2011; 65: 640–644.
  86. Łuszczewski A, Matyska-Piekarska E, Trefler J, et al. Śliwińska- Stańczyk P. 2007. Reaktywne formy tlenu – znaczenie w fizjologii i stanach patologii organizmu. Reumatologia, 45. ; 5: 284–289.
  87. Fitowska A, Ostałowska A, Dobrakowski M, et al. Protein metabolism in the synovial membrane in the hip osteoarthritis. Pol Orthop Traumatol. 2012; 77: 21–26.
  88. Gacko M, Worowska A, Karwowska A, et al. 2006. Extracellular Superoxide Dismutase in Vascular Wall. Adv Clin Exp Med 15. ; 5: 925–932.
  89. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007; 39(1): 44–84.
  90. Malinowska K, Modranka R. 2010. Wpływ związków chromonu na aktywność wybranych enzymów antyoksydacyjnych u chorych z ograniczeniami ruchowymi Pol. Merk Lek XXVIII. ; 163: 26–28.
  91. Pawlak W, Kedziora J, Zolynski K, et al. Effect of long term bed rest in men on enzymatic antioxidative defence and lipid peroxidation in erythrocytes. J Gravit Physiol. 1998; 5(1): P163–P164.
  92. Zaichick V, Zaichick S. Instrumental neutron activation analysis of trace element contents in the rib bone of healthy men. Journal of Radioanalytical and Nuclear Chemistry. 2009; 281(1): 47–52.
  93. Wauquier F, Leotoing L, Coxam V, et al. Oxidative stress in bone remodelling and disease. Trends Mol Med. 2009; 15(10): 468–477.
  94. Goc S, Błaszczyk J, Ziajka P, et al. Górna1 E., Kowalczyk E. 2011. Wybrane elementy równowagi oksydacyjno-redukcyjnej u pacjentów z chorobą zwyrodnieniową stawów biodrowych. : K.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., ul. Świętokrzyska 73, 80–180 Gdańsk, Poland
tel.:+48 58 320 94 94, fax:+48 58 320 94 60, e-mail: viamedica@viamedica.pl