Vol 9, No 3 (2018)
Review paper
Published online: 2018-10-17

open access

Page views 1030
Article views/downloads 1805
Get Citation

Connect on Social Media

Connect on Social Media

Light-chain cardiac amyloidosis from the cardiologists’ point of view

Jacek Grzybowski1, Justyna Anna Szczygieł1, Monika Gawor1, Piotr Michałek2, Agnieszka Sioma1, Natalia Ojrzyńska1, Łukasz Mazurkiewicz13, Marta Legatowicz-Koprowska4, Ewa Walczak4, Maria Franaszczyk5, Magdalena Marczak3
Hematologia 2018;9(3):222-238.

Abstract

Light-chain amyloidosis (amyloidosis AL) is diagnosed in approx. 70% of patients with cardiac amyloidosis. This type of amyloidosis has the worst prognosis, especially if the diagnosis is made in advanced stages. The majority of patients are referred to a cardiologist, but unfortunately only every fifth of them has the proper diagnosis. Therefore, strategies promoting early diagnosis are important. One of them is the measurement of serum free light chains concentration in every patient with heart failure with preserved ejection fraction. The acknowledgement of free light chains (FLCs) cardiotoxicity rendered the picture of AL amyloidosis from infiltrative cardiomyopathy into a toxic one. Best improvement in regard to heart failure is achieved upon hematological treatment resulting in decrease of FLCs concentration. Therefore, cardiological treatment is rather a supportive therapy. The role of cardiologist is the rapid diagnosis of the disease and referral of the patient to the hematologist. The standard heart failure treatment encompassing use of beta-blockers and angiotensin converting enzyme inhibitors aggravates orthostatic hypotension and congestion. Instead, up-to-date hematological treatment improves the prognosis of AL amyloidosis markedly, as long as early diagnosis is made.

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. Wechalekar A, Gillmore J, Hawkins P. Systemic amyloidosis. The Lancet. 2016; 387(10038): 2641–2654.
  2. Castaño A, Drachman BM, Judge D, et al. Natural history and therapy of TTR-cardiac amyloidosis: emerging disease-modifying therapies from organ transplantation to stabilizer and silencer drugs. Heart Fail Rev. 2015; 20(2): 163–178.
  3. Milani P , Merlini G , Palladini G Light chain amyloidosis Mediterr J Hematol Infect Dis. 2018; 10: e2018022.
  4. Dispenzieri A, Buadi F, Kumar SK, et al. Treatment of immunoglobulin light chain amyloidosis: Mayo Stratification of Myeloma and risk-adapted Therapy (mSMART) Consensus Statement. Mayo Clin Proc. 2015; 90(8): 1054–1081.
  5. Szczygieł JA, Wieczorek PZ, Drozd-Sokołowska J, et al. Impaired right ventricular function as a predictor of early mortality in patients with light‑ chain cardiac amyloidosis assessed in a cardiology department. Pol Arch Intern Med. 2017; 127(12): 854–864.
  6. Muchtar E, Gertz MA, Kumar SK, et al. Improved outcomes for newly diagnosed AL amyloidosis between 2000 and 2014: cracking the glass ceiling of early death. Blood. 2017; 129(15): 2111–2119.
  7. Grogan M, Dispenzieri A. Natural history and therapy of AL cardiac amyloidosis. Heart Fail Rev. 2015; 20(2): 155–162.
  8. Lousada I, Comenzo RL, Landau H, et al. Light chain amyloidosis: patient experience survey from the Amyloidosis Research Consortium. Adv Ther. 2015; 32(10): 920–928.
  9. Falk RH, Alexander KM, Liao R, et al. AL (Light-Chain) Cardiac Amyloidosis: A Review of Diagnosis and Therapy. J Am Coll Cardiol. 2016; 68(12): 1323–1341.
  10. Migrino RQ, Truran S, Gutterman DD, et al. Human microvascular dysfunction and apoptotic injury induced by AL amyloidosis light chain proteins. Am J Physiol Heart Circ Physiol. 2011; 301(6): H2305–H2312.
  11. Murtagh B, Hammill SC, Gertz MA, et al. Electrocardiographic findings in primary systemic amyloidosis and biopsy-proven cardiac involvement. Am J Cardiol. 2005; 95(4): 535–537.
  12. Said SM, Grogg KL, Smyrk TC. Gastric amyloidosis: clinicopathological correlations in 79 cases from a single institution. Hum Pathol. 2015; 46(4): 491–498.
  13. Rosenbaum E, Marks D, Raza S. Diagnosis and management of neuropathies associated with plasma cell dyscrasias. Hematol Oncol. 2018; 36(1): 3–14.
  14. Burroughs EI, Aronson AE, Duffy JR, et al. Speech disorders in systemic amyloidosis. Br J Disord Commun. 1991; 26(2): 201–206.
  15. Szczygieł JA, Michałek P, Drozd-Sokołowska J. Soluble suppression of tumorigenicity 2 (sST2) and growth differentiation factor 15 (GDF-15) help to identify patients with light-chain amyloidosis in a cardiology department — a single centre study. International Symposion on Amyloidosis 2018. Kumamoto, Japan 2018.
  16. Falk RH. Diagnosis and management of the cardiac amyloidoses. Circulation. 2005; 112(13): 2047–2060.
  17. Berk JL, Keane J, Seldin DC, et al. Persistent pleural effusions in primary systemic amyloidosis: etiology and prognosis. Chest. 2003; 124(3): 969–977.
  18. Dmoszyńska A, Usnarska-Zubkiewicz L, Walewski J, et al. Zalecenia Polskiej Grupy Szpiczakowej dotyczące rozpoznawania i leczenia szpiczaka plazmocytowego oraz innych dyskrazji plazmocytowych na rok 2017. Acta Haematol Pol. 2017; 48(2): 55–103.
  19. Grogan M, Dispenzieri A, Gertz MA. Light-chain cardiac amyloidosis: strategies to promote early diagnosis and cardiac response. Heart. 2017; 103(14): 1065–1072.
  20. Carroll JD, Gaasch W, McAdam K. Amyloid cardiomyopathy: characterization by a distinctive voltage/mass relation. Am J Cardiol. 1982; 49(1): 9–13.
  21. Das MK, Khan B, Jacob S, et al. Significance of a fragmented QRS complex versus a Q wave in patients with coronary artery disease. Circulation. 2006; 113(21): 2495–2501.
  22. Perlini S, Salinaro F, Cappelli F, et al. Prognostic value of fragmented QRS in cardiac AL amyloidosis. Int J Cardiol. 2013; 167(5): 2156–2161.
  23. Gertz MA, Benson MD, Dyck PJ, et al. Diagnosis, prognosis, and therapy of transthyretin amyloidosis. J Am Coll Cardiol. 2015; 66(21): 2451–2466.
  24. Halatchev IG, Zheng J, Ou J. Wild-type transthyretin cardiac amyloidosis (ATTRwt-CA), previously known as senile cardiac amyloidosis: clinical presentation, diagnosis, management and emerging therapies. J Thorac Dis. 2018; 10(3): 2034–2045.
  25. Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016; 29(4): 277–314.
  26. Klein AL, Hatle LK, Taliercio CP, et al. Serial Doppler echocardiographic follow-up of left ventricular diastolic function in cardiac amyloidosis. J Am Coll Cardiol. 1990; 16(5): 1135–1141.
  27. Phelan D, Collier P, Thavendiranathan P, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012; 98(19): 1442–1448.
  28. Bodez D, Ternacle J, Guellich A, et al. Prognostic value of right ventricular systolic function in cardiac amyloidosis. Amyloid. 2016; 23(3): 158–167.
  29. Uzan C, Lairez O, Raud-Raynier P, et al. Right ventricular longitudinal strain: a tool for diagnosis and prognosis in light-chain amyloidosis. Amyloid. 2018; 25(1): 18–25.
  30. Patel AR, Dubrey SW, Mendes LA, et al. Right ventricular dilation in primary amyloidosis: an independent predictor of survival. Am J Cardiol. 1997; 80(4): 486–492.
  31. Dubrey S, Pollak A, Skinner M, et al. Atrial thrombi occurring during sinus rhythm in cardiac amyloidosis: evidence for atrial electromechanical dissociation. Br Heart J. 1995; 74(5): 541–544.
  32. Lee GaY, Kim K, Choi JO, et al. Cardiac amyloidosis without increased left ventricular wall thickness. Mayo Clin Proc. 2014; 89(6): 781–789.
  33. Philippakis AA, Falk RH. Cardiac amyloidosis mimicking hypertrophic cardiomyopathy with obstruction: treatment with disopyramide. Circulation. 2012; 125(14): 1821–1824.
  34. Vogelsberg H, Mahrholdt H, Deluigi CC, et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J Am Coll Cardiol. 2008; 51(10): 1022–1030.
  35. Kwong RY, Heydari B, Abbasi S, et al. Characterization of cardiac amyloidosis by atrial late gadolinium enhancement using contrast-enhanced cardiac magnetic resonance imaging and correlation with left atrial conduit and contractile function. Am J Cardiol. 2015; 116(4): 622–629.
  36. Banypersad SM, Fontana M, Maestrini V, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J. 2015; 36(4): 244–251.
  37. Fontana M, Pica S, Reant P, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2015; 132(16): 1570–1579.
  38. Bonnichsen CR, Glockner JF, Grogan M. Improvement in myocardial delayed enhancement after autologous stem cell transplant in a patient with light chain amyloidosis. Circ Heart Fail. 2012; 5(3): e55.
  39. Shi J, Guan J, Jiang B, et al. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38alpha MAPK pathway. Proc Natl Acad Sci USA. 2010; 107(9): 4188–4193.
  40. Palladini G, Campana C, Klersy C, et al. Serum N-terminal pro-brain natriuretic peptide is a sensitive marker of myocardial dysfunction in AL amyloidosis. Circulation. 2003; 107(19): 2440–2445.
  41. Dispenzieri A, Gertz M, Kyle R, et al. Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J Clin Oncol. 2004; 22(18): 3751–3757.
  42. Palladini G, Foli A, Milani P, et al. Best use of cardiac biomarkers in patients with AL amyloidosis and renal failure. Am J Hematol. 2012; 87(5): 465–471.
  43. Palladini G, Milani P, Merlini G. Novel strategies for the diagnosis and treatment of cardiac amyloidosis. Expert Rev Cardiovasc Ther. 2015; 13(11): 1195–1211.
  44. Dispenzieri A, Gertz MA, Kyle RA, et al. Prognostication of survival using cardiac troponins and N-terminal pro-brain natriuretic peptide in patients with primary systemic amyloidosis undergoing peripheral blood stem cell transplantation. Blood. 2004; 104(6): 1881–1887.
  45. Palladini G, Dispenzieri A, Gertz MA, et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol. 2012; 30(36): 4541–4549.
  46. Muchtar E, Dispenzieri A, Leung N, et al. Depth of organ response in AL amyloidosis is associated with improved survival: grading the organ response criteria. Leukemia. 2018 [Epub ahead of print].
  47. Dispenzieri A, Dingli D, Kumar SK, et al. Discordance between serum cardiac biomarker and immunoglobulin-free light-chain response in patients with immunoglobulin light-chain amyloidosis treated with immune modulatory drugs. Am J Hematol. 2010; 85(10): 757–759.
  48. Tapan U, Seldin DC, Finn KT, et al. Increases in B-type natriuretic peptide (BNP) during treatment with lenalidomide in AL amyloidosis. Blood. 2010; 116(23): 5071–5072.
  49. Dispenzieri A, Gertz MA, Saenger A, et al. Soluble suppression of tumorigenicity 2 (sST2), but not galactin-3, adds to prognostication in patients with systemic AL amyloidosis independent of NT-proBNP and troponin T. Am J Hematol. 2015; 90(6): 524–528.
  50. Kastritis E, Papassotiriou I. Growth differentiation factor-15 in patients with light chain (AL) amyloidosis has independent prognostic significance and adds prognostic information related to risk of early death and renal outcomes. Blood. 2014; 124: 306.
  51. Szczygieł JA, Michałek P, Drozd-Sokołowska J et al. sST-2 i GDF-15 jako nowoczesne markery kardiologiczne w amyloidzie serca z łańcuchów lekkich. XXVII Zjazd Polskiego Towarzystwa Hematologów i Transfuzjologów. 21–23 września 2018 r. Warszawa, Polska.
  52. Kastritis E, Papassotiriou I, Merlini G, et al. Growth differentiation factor-15 is a new biomarker for survival and renal outcomes in light chain amyloidosis. Blood. 2018; 131(14): 1568–1575.
  53. Katzmann JA, Abraham RS, Dispenzieri A, et al. Diagnostic performance of quantitative kappa and lambda free light chain assays in clinical practice. Clin Chem. 2005; 51(5): 878–881.
  54. Kumar S, Dispenzieri A, Lacy MQ, et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol. 2012; 30(9): 989–995.
  55. Phull P, Sanchorawala V, Connors LH, et al. Monoclonal gammopathy of undetermined significance in systemic transthyretin amyloidosis (ATTR). Amyloid. 2018; 25(1): 62–67.
  56. Maleszewski JJ, Murray DL, Dispenzieri A, et al. Relationship between monoclonal gammopathy and cardiac amyloid type. Cardiovasc Pathol. 2013; 22(3): 189–194.
  57. Dorbala S, Vangala D, Bruyere J, et al. Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Fail. 2014; 2(4): 358–367.
  58. Pulido V, Doros G, Berk JL, et al. The six-minute walk test in patients with AL amyloidosis: a single centre case series. Br J Haematol. 2017; 177(3): 388–394.
  59. Flatman K, Foard D, Pyart E, et al. Six-minute walk test (6MWT) in AL amyloidosis — baseline and 12-month follow-up after chemotherapy. Amyloid. 2017; 24(Suppl 1): 62–63.
  60. Gertz MA. Immunoglobulin light chain amyloidosis: 2011 update on diagnosis, risk-stratification, and management. Am J Hematol. 2011; 86(2): 180–186.
  61. Maleszewski JJ. Cardiac amyloidosis: pathology, nomenclature, and typing. Cardiovasc Pathol. 2015; 24(6): 343–350.
  62. Cooper LT, Baughman KL, Feldman AM, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. Eur Heart J. 2007; 28(24): 3076–3093.
  63. Quarta CC, Gonzalez-Lopez E, Gilbertson JA, et al. Diagnostic sensitivity of abdominal fat aspiration in cardiac amyloidosis. Eur Heart J. 2017; 38(24): 1905–1908.
  64. Milani P, Merlini G, Palladini G. Novel therapies in light chain amyloidosis. Kidney Int Rep. 2018; 3(3): 530–541.
  65. Rapezzi C, Quarta CC, Guidalotti PL, et al. Usefulness and limitations of 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in the aetiological diagnosis of amyloidotic cardiomyopathy. Eur J Nucl Med Mol Imaging. 2011; 38(3): 470–478.
  66. Gillmore JD, Maurer M, Falk R, et al. Non-biopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016; 133(24): 2404–2412.
  67. Gawor M, Sioma A, Mazurkiewicz Ł Ł, et al. Genetic diagnosis in transthyretin cardiac amyloidosis — a single Polish centre experience. Eur J Heart Fail. 2018; 20(Suppl. S1): 331.
  68. Wechalekar AD, Gillmore JD, Bird J, et al. BCSH Committee. Guidelines on the management of AL amyloidosis. Br J Haematol. 2015; 168(2): 186–206.
  69. Siddiqi OK, Ruberg FL. Cardiac amyloidosis: an update on pathophysiology, diagnosis, and treatment. Trends Cardiovasc Med. 2018; 28(1): 10–21.
  70. Muchtar E, Gertz MA, Kumar SK, et al. Digoxin use in systemic light-chain (AL) amyloidosis: contra-indicated or cautious use? Amyloid. 2018 [Epub ahead of print]: 1–7.
  71. Muchtar E, Dean DS, Dispenzieri A, et al. Prevalence and predictors of thyroid functional abnormalities in newly diagnosed AL amyloidosis. J Intern Med. 2017; 281(6): 611–619.
  72. Gertz MA, Falk RH, Skinner M, et al. Worsening of congestive heart failure in amyloid heart disease treated by calcium channel-blocking agents. Am J Cardiol. 1985; 55(13 Pt 1): 1645.
  73. Pollak A, Falk RH. Left ventricular systolic dysfunction precipitated by verapamil in cardiac amyloidosis. Chest. 1993; 104(2): 618–620.
  74. d'Humières T, Fard D, Damy T, et al. Outcome of patients with cardiac amyloidosis admitted to an intensive care unit for acute heart failure. Arch Cardiovasc Dis. 2018 [Epub ahead of print].
  75. Choufani EB, Sanchorawala V, Ernst T, et al. Acquired factor X deficiency in patients with amyloid light-chain amyloidosis: incidence, bleeding manifestations, and response to high-dose chemotherapy. Blood. 2001; 97(6): 1885–1887.
  76. Mumford AD, O'Donnell J, Gillmore JD, et al. Bleeding symptoms and coagulation abnormalities in 337 patients with AL-amyloidosis. Br J Haematol. 2000; 110(2): 454–460.
  77. McPherson RA, Onstad JW, Ugoretz RJ, et al. Coagulopathy in amyloidosis: combined deficiency of factors IX and X. Am J Hematol. 1977; 3: 225–235.
  78. Bever KM, Masha LI, Sun F, et al. Risk factors for venous thromboembolism in immunoglobulin light chain amyloidosis. Haematologica. 2016; 101(1): 86–90.
  79. Gamba G, Montani N, Anesi E, et al. Abnormalities in thrombin-antithrombin pathway in AL amyloidosis. Amyloid. 1999; 6(4): 273–277.
  80. Park H, Kim JW, Youk J, et al. Serum free light chain difference and β2-microglobulin levels are risk factors for thromboembolic events in patients with AL amyloidosis. Clin Lymphoma Myeloma Leuk. 2018; 18(6): 408–414.
  81. Pereira NL, Grogan M, Dec GW. Spectrum of restrictive and infiltrative cardiomyopathies: part 1 of a 2-part series. J Am Coll Cardiol. 2018; 71(10): 1130–1148.
  82. Bhogal S, Ladia V, Sitwala P, et al. Cardiac amyloidosis: an updated review with emphasis on diagnosis and future directions. Curr Probl Cardiol. 2018; 43(1): 10–34.
  83. Ward JE, Ren R, Toraldo G, et al. Doxycycline reduces fibril formation in a transgenic mouse model of AL amyloidosis. Blood. 2011; 118(25): 6610–6617.
  84. Kumar SK, Dispenzieri A, Lacy MQ, et al. Doxycycline used as post-transplant antibacterial prophylaxis improves survival in patients with light chain amyloidosis undergoing autologous stem cell transplantation. Blood. 2012; 120: 3138.
  85. Wechalekar AD, Whelan C. Encouraging impact of doxycycline on early mortality in cardiac light chain (AL) amyloidosis. Blood Cancer J. 2017; 7(3): e546.
  86. Obici L, Cortese A, Lozza A, et al. Doxycycline plus tauroursodeoxycholic acid for transthyretin amyloidosis: a phase II study. Amyloid. 2012; 19(Suppl 1): 34–36.
  87. Lin G, Dispenzieri A, Kyle R, et al. Implantable cardioverter defibrillators in patients with cardiac amyloidosis. J Cardiovasc Electrophysiol. 2013; 24(7): 793–798.
  88. Sayed RH, Rogers D, Khan F, et al. A study of implanted cardiac rhythm recorders in advanced cardiac AL amyloidosis. Eur Heart J. 2015; 36(18): 1098–1105.
  89. Barbhaiya CR, Kumar S, Baldinger SH, et al. Electrophysiologic assessment of conduction abnormalities and atrial arrhythmias associated with amyloid cardiomyopathy. Heart Rhythm. 2016; 13(2): 383–390.
  90. Grogan M, Gertz M, McCurdy A, et al. Long term outcomes of cardiac transplant for immunoglobulin light chain amyloidosis: the Mayo Clinic experience. World J Transplant. 2016; 6(2): 380–388.
  91. Palladini G, Merlini G. What is new in diagnosis and management of light chain amyloidosis? Blood. 2016; 128(2): 159–168.
  92. Patel SR, Saeed O, Naftel D, et al. Outcomes of restrictive and hypertrophic cardiomyopathies after LVAD: an INTERMACS analysis. J Card Fail. 2017; 23(12): 859–867.
  93. Swiecicki PL, Edwards BS, Kushwaha SS, et al. Left ventricular device implantation for advanced cardiac amyloidosis. J Heart Lung Transplant. 2013; 32(5): 563–568.
  94. Mueller PS, Edwards WD, Gertz MA. Symptomatic ischemic heart disease resulting from obstructive intramural coronary amyloidosis. Am J Med. 2000; 109(3): 181–188.
  95. Kirchhof P, Benussi S, Kotecha D, et al. ESC Scientific Document Group. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016; 37(38): 2893–2962.
  96. Brignole M, Moya A, de Lange FJ, et al. ESC Scientific Document Group. 2018 ESC Guidelines for the diagnosis and management of syncope. Eur Heart J. 2018; 39(21): 1883–1948.



Hematology in Clinical Practice