Vol 14 (2023): Continuous Publishing
Review paper
Published online: 2024-03-18

open access

Page views 244
Article views/downloads 154
Get Citation

Connect on Social Media

Connect on Social Media

Herpes zoster infections: epidemiology, diagnostics, and prophylaxis in light of a growing clinical problem

Paulina Własiuk1, Krzysztof Giannopoulos1
Hematology in Clinical Practice 2023;14:69-79.

Abstract

Herpes zoster (HZ) is an infectious disease that develops from reactivation of latent infection with the of the chickenpox and varicella zoster virus (VZV). Particularly vulnerable are the elderly and patients with weakened immune system function, including especially patients with cancers of the hematopoietic and lymphatic systems and lymphatic systems or solid tumors. HZ is often ac-companied by complications, most often in the form of herpes zoster neuralgia, hearing or vision loss or vasculopathy. Antiviral prophylaxis reduces the risk of HZ in patients with impaired immune system function, but does not reduce the risk of developing complications, especially neuralgia. For this reason, the importance of immunization against the VZV, especially in groups at increased risk of contracting the disease. The article collects current data on the epidemiology of infection, the course of infection and current opportunities for prevention of HZ infections.

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. Risco Risco C, Herrador Z, Lopez-Perea N, et al. Epidemiology of herpes zoster in the pre-vaccination era: establishing the baseline for vaccination programme's impact in spain. Euro Surveill. 2023; 28(8).
  2. Koshy E, Mengting Lu, Kumar H, et al. Epidemiology, treatment and prevention of herpes zoster: a comprehensive review. Indian J Dermatol Venereol Leprol. 2018; 84(3): 251–262.
  3. Davison AJ, Scott J. The complete DNA sequence of varicella-zoster virus. J Gen Virol. 1986; 67(9): 1759–1816.
  4. Depledge DP, Sadaoka T, Ouwendijk WJD. Molecular aspects of varicella-zoster virus latency. Viruses. 2018; 10(7).
  5. Braspenning SE, Sadaoka T, Breuer J, et al. Decoding the architecture of the varicella-zoster virus transcriptome. mBio. 2020; 11(5).
  6. Zerboni L, Sen N, Oliver SL, et al. Molecular mechanisms of varicella zoster virus pathogenesis. Nat Rev Microbiol. 2014; 12(3): 197–210.
  7. Mueller NH, Gilden DH, Cohrs RJ, et al. Varicella zoster virus infection: clinical features, molecular pathogenesis of disease, and latency. Neurol Clin. 2008; 26(3): 675–97, viii.
  8. Gershon AA, Gershon MD. Pathogenesis and current approaches to control of varicella-zoster virus infections. Clin Microbiol Rev. 2013; 26(4): 728–743.
  9. Sorel O, Messaoudi I. Insights into the pathogenesis of varicella viruses. Curr Clin Microbiol Rep. 2019; 6(3): 156–165.
  10. Jeon YH. Herpes zoster and postherpetic neuralgia: practical consideration for prevention and treatment. Korean J Pain. 2015; 28(3): 177–184.
  11. Sampathkumar P, Drage LA, Martin DP. Herpes zoster (shingles) and postherpetic neuralgia. Mayo Clin Proc. 2009; 84(3): 274–280.
  12. Gerada C, Campbell TM, Kennedy JJ, et al. Manipulation of the innate immune response by varicella zoster virus. Front Immunol. 2020; 11: 1.
  13. Tommasi C, Breuer J. The biology of varicella-zoster virus replication in the skin. Viruses. 2022; 14(5).
  14. Laing KJ, Ouwendijk WJD, Koelle DM, et al. Immunobiology of varicella-zoster virus infection. J Infect Dis. 2018; 218(suppl_2): S68–S74.
  15. Quinlivan M, Breuer J. Molecular studies of varicella zoster virus. Rev Med Virol. 2006; 16(4): 225–250.
  16. Kennedy PGE, Mogensen TH, Cohrs RJ. Recent issues in varicella-zoster virus latency. Viruses. 2021; 13(10).
  17. Ouwendijk WJD, Choe A, Nagel MA, et al. Restricted varicella-zoster virus transcription in human trigeminal ganglia obtained soon after death. J Virol. 2012; 86(18): 10203–10206.
  18. Patil A, Goldust M, Wollina U. Herpes zoster: a review of clinical manifestations and management. Viruses. 2022; 14(2).
  19. Mahale P, Yanik EL, Engels EA. Herpes zoster and risk of cancer in the elderly U.S. population. Cancer Epidemiol Biomarkers Prev. 2016; 25(1): 28–35.
  20. Allegra A, Tonacci A, Musolino C, et al. Secondary immunodeficiency in hematological malignancies: focus on multiple myeloma and chronic lymphocytic leukemia. Front Immunol. 2021; 12: 738915.
  21. Shadman M. Diagnosis and treatment of chronic lymphocytic leukemia: a review. JAMA. 2023; 329(11): 918–932.
  22. Friman V, Winqvist O, Blimark C, et al. Secondary immunodeficiency in lymphoproliferative malignancies. Hematol Oncol. 2016; 34(3): 121–132.
  23. Sandherr M, Einsele H, Hebart H, et al. Infectious Diseases Working Party, German Society for Hematology and Oncology. Antiviral prophylaxis in patients with haematological malignancies and solid tumours: Guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Oncology (DGHO). Ann Oncol. 2006; 17(7): 1051–1059.
  24. McKay SL, Guo A, Pergam SA, et al. Herpes zoster risk in immunocompromised adults in the United States: a systematic review. Clin Infect Dis. 2020; 71(7): e125–e134.
  25. Green ML. Viral pneumonia in patients with hematopoietic cell transplantation and hematologic malignancies. Clin Chest Med. 2017; 38(2): 295–305.
  26. Habel LA, Ray G, Silverberg M, et al. The epidemiology of herpes zoster in patients with newly diagnosed cancer. Cancer Epidemiol Biomarkers Prev. 2013; 22(1): 82–90.
  27. Tayyar R, Ho D. Herpes simplex virus and varicella zoster virus infections in cancer patients. Viruses. 2023; 15(2).
  28. Vermont CL, Jol-van der Zijde ECM, Hissink Muller P, et al. Varicella zoster reactivation after hematopoietic stem cell transplant in children is strongly correlated with leukemia treatment and suppression of host t-lymphocyte immunity. Transpl Infect Dis. 2014; 16(2): 188–194.
  29. Shinohara A, Osanai S, Izuka Y, et al. Herpes zoster after autologous haematopoietic stem cell transplantation without antiviral prophylaxis. Br J Haematol. 2019; 186(6): e195–e197.
  30. Koldehoff M, Horn PA, Lindemann M. Cellular immune response after vaccination with an adjuvanted, recombinant zoster vaccine in allogeneic hematopoietic stem cell transplant recipients. Vaccines (Basel). 2022; 10(5).
  31. Dagnew AF, Ilhan O, Lee WS, et al. Immunogenicity and safety of the adjuvanted recombinant zoster vaccine in adults with haematological malignancies: a phase 3, randomised, clinical trial and post-hoc efficacy analysis. Lancet Infect Dis. 2019; 19(9): 988–1000.
  32. Pergam SA, Limaye AP. AST Infectious Diseases Community of Practice. Varicella zoster virus in solid organ transplantation: guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant. 2019; 33(9): e13622.
  33. Kho MML, Roest S, Bovée DM, et al. Herpes zoster in solid organ transplantation: incidence and risk factors. Front Immunol. 2021; 12: 645718.
  34. Barnabas RV, Baeten JM, Lingappa JR, et al. Partners in Prevention HSV/HIV Transmission Study Team. Acyclovir prophylaxis reduces the incidence of herpes zoster among HIV-infected individuals: results of a randomized clinical trial. J Infect Dis. 2016; 213(4): 551–555.
  35. Blennow O, Fjaertoft G, Winiarski J, et al. Varicella-zoster reactivation after allogeneic stem cell transplantation without routine prophylaxis--the incidence remains high. Biol Blood Marrow Transplant. 2014; 20(10): 1646–1649.
  36. Harbecke R, Cohen JI, Oxman MN. Herpes zoster vaccines. J Infect Dis. 2021; 224(12 Suppl 2): S429–S442.
  37. Baden LR, Swaminathan S, Angarone M, et al. Prevention and treatment of cancer-related infections, version 2.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2016; 14(7): 882–913.
  38. Boeckh M, Kim HW, Flowers MED, et al. Long-term acyclovir for prevention of varicella zoster virus disease after allogeneic hematopoietic cell transplantation--a randomized double-blind placebo-controlled study. Blood. 2006; 107(5): 1800–1805.
  39. Andrei G, Snoeck R. Advances and perspectives in the management of varicella-zoster virus infections. Molecules. 2021; 26(4).
  40. Sandherr M, Hentrich M, von Lilienfeld-Toal M, et al. Antiviral prophylaxis in patients with solid tumours and haematological malignancies — update of the Guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO). Ann Hematol. 2015; 94(9): 1441–1450.
  41. Keating MJ, O’Brien S, Lerner S, et al. Long-Term follow-up of patients with chronic lymphocytic leukemia (CLL) receiving fludarabine regimens as initial therapy. Blood. 1998; 92(4): 1165–1171.
  42. Bergmann L, Fenchel K, Jahn B, et al. Immunosuppressive effects and clinical response of fludarabine in refractory chronic lymphocytic leukemia. Ann Oncol. 1993; 4(5): 371–375.
  43. Ho DY, Enriquez K, Multani A. Herpesvirus infections potentiated by biologics. Infect Dis Clin North Am. 2020; 34(2): 311–339.
  44. Palumbo A, Sezer O, Kyle R, et al. IMWG. International Myeloma Working Group guidelines for the management of multiple myeloma patients ineligible for standard high-dose chemotherapy with autologous stem cell transplantation. Leukemia. 2009; 23(10): 1716–1730.
  45. Leng S, Lentzsch S, Shen Y, et al. Use and impact of herpes zoster prophylaxis in myeloma patients treated with proteasome inhibitors. Leuk Lymphoma. 2018; 59(10): 2465–2469.
  46. Oestreich KJ, Yoon H, Ahmed R, et al. NFATc1 regulates PD-1 expression upon T cell activation. J Immunol. 2008; 181(7): 4832–4839.
  47. Hope-Simpson RE. The nature of herpes zoster: a long-term study and a new hypothesis. Proc R Soc Med. 1965; 58(1): 9–20.
  48. Takahashi M, Asano Y, Kamiya H, et al. Development of varicella vaccine. J Infect Dis. 2008; 197(Suppl 2): S41–S44.
  49. Izurieta HS, Wernecke M, Kelman J, et al. Effectiveness and duration of protection provided by the live-attenuated herpes zoster vaccine in the medicare population ages 65 years and older. Clin Infect Dis. 2017; 64(6): 785–793.
  50. Tseng HFu, Harpaz R, Luo Yi, et al. Declining effectiveness of herpes zoster vaccine in adults aged ≥60 years. J Infect Dis. 2016; 213(12): 1872–1875.
  51. Lal H, Cunningham AL, Godeaux O, et al. ZOE-50 Study Group. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med. 2015; 372(22): 2087–2096.
  52. Cunningham AL, Heineman TC, Lal H, et al. ZOE-50/70 Study Group. Immune responses to a recombinant glycoprotein e herpes zoster vaccine in adults aged 50 years or older. J Infect Dis. 2018; 217(11): 1750–1760.
  53. Cunningham AL, Lal H, Kovac M, et al. Efficacy of the herpes zoster subunit vaccine in adults 70 years of age or older. N Engl J Med. 2016; 375(11): 1019–1032.
  54. Heineman TC, Cunningham A, Levin M. Understanding the immunology of Shingrix, a recombinant glycoprotein E adjuvanted herpes zoster vaccine. Curr Opin Immunol. 2019; 59: 42–48.
  55. Detienne S, Welsby I, Collignon C, et al. Central role of CD169 lymph node resident macrophages in the adjuvanticity of the QS-21 component of AS01. Sci Rep. 2016; 6: 39475.
  56. Alexander KE, Tong PL, Macartney K, et al. Live zoster vaccination in an immunocompromised patient leading to death secondary to disseminated varicella zoster virus infection. Vaccine. 2018; 36(27): 3890–3893.
  57. Price NB, Grose C. Corticosteroids contribute to serious adverse events following live attenuated varicella vaccination and live attenuated zoster vaccination. Vaccines (Basel). 2021; 9(1).
  58. Shankland KR, Armitage JO, Hancock BW. Non-Hodgkin lymphoma. Lancet. 2012; 380(9844): 848–857.
  59. Coiffier B. Rituximab therapy in malignant lymphoma. Oncogene. 2007; 26(25): 3603–3613.
  60. Parrino J, McNeil SA, Lawrence SJ, et al. Safety and immunogenicity of inactivated varicella-zoster virus vaccine in adults with hematologic malignancies receiving treatment with anti-CD20 monoclonal antibodies. Vaccine. 2017; 35(14): 1764–1769.
  61. Bastidas A, de la Serna J, El Idrissi M, et al. ZOE-HSCT Study Group Collaborators. Effect of recombinant zoster vaccine on incidence of herpes zoster after autologous stem cell transplantation: a randomized clinical trial. JAMA. 2019; 322(2): 123–133.
  62. Vink P, Ramon Torrell JM, Sanchez Fructuoso A, et al. Z-041 Study Group. Immunogenicity and safety of the adjuvanted recombinant zoster vaccine in chronically immunosuppressed adults following renal transplant: a phase 3, randomized clinical trial. Clin Infect Dis. 2020; 70(2): 181–190.
  63. Vink P, Delgado Mingorance I, Maximiano Alonso C, et al. Zoster-028 Study Group. Immunogenicity and safety of the adjuvanted recombinant zoster vaccine in patients with solid tumors, vaccinated before or during chemotherapy: a randomized trial. Cancer. 2019; 125(8): 1301–1312.
  64. Blank LJ, Polydefkis MJ, Moore RD, et al. Herpes zoster among persons living with HIV in the current antiretroviral therapy era. J Acquir Immune Defic Syndr. 2012; 61(2): 203–207.
  65. Glesby MJ, Moore RD, Chaisson RE. Clinical spectrum of herpes zoster in adults infected with human immunodeficiency virus. Clin Infect Dis. 1995; 21(2): 370–375.
  66. Berkowitz EM, Moyle G, Stellbrink HJ, et al. Zoster-015 HZ/su Study Group. Safety and immunogenicity of an adjuvanted herpes zoster subunit candidate vaccine in HIV-infected adults: a phase 1/2a randomized, placebo-controlled study. J Infect Dis. 2015; 211(8): 1279–1287.



Hematology in Clinical Practice