Vol 12, No 3-4 (2021)
Review paper
Published online: 2022-02-18

open access

Page views 2552
Article views/downloads 567
Get Citation

Connect on Social Media

Connect on Social Media

JAK and STAT gene mutations and JAK-STAT pathway activation in lympho- and myeloproliferative neoplasms

Michał Łączak1, Martyna Kuczyńska1, Joanna Grygier1, Dominika Andrzejewska1, Wiktoria Grochowska1, Hanna Gulaczyk1, Krzysztof Lewandowski1
Hematology in Clinical Practice 2021;12(3-4):89-104.


Lympho- and myeloproliferative neoplasms are a very heterogeneous group of haematological malignancies originating from a haematopoietic stem cell (HSC). In most of them, the neoplastic transformation is a result of the acquisition of molecular defects by HSC or progenitor cells, impairing their proliferation, differentiation and maturation. Herein, the role of the Janus kinase-signal transduction and transcription activation (JAK-STAT) signalling pathway in the normal and neoplastic lympho- and myelopoiesis is presented. Particular attention is paid to the molecular aberrations of the JAK and STAT genes and their impact on JAK and STAT signalling pathway function and the mutation-driven mechanism of the lymphoid and myeloid cells neoplastic transformation. In the Authors’ opinion, its early identification allows to incorporate the molecularly targeted drugs, including JAK-STAT pathway signalling inhibitors, to the therapeutic algorithm used and to improve the treatment results of lymphoid- and myeloid neoplasms.

Article available in PDF format

View PDF Download PDF file


  1. Ceredig R, Rolink AG, Brown G. Models of haematopoiesis: seeing the wood for the trees. Nat Rev Immunol. 2009; 9(4): 293–300.
  2. Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003; 425(6960): 841–846.
  3. Méndez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010; 466(7308): 829–834.
  4. Sugiyama T, Kohara H, Noda M, et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006; 25(6): 977–988.
  5. Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol. 2011; 12(10): 643–655.
  6. Cedar H, Bergman Y. Epigenetics of haematopoietic cell development. Nat Rev Immunol. 2011; 11(7): 478–488.
  7. Rosenbauer F, Tenen DG. Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol. 2007; 7(2): 105–117.
  8. Ramírez J, Lukin K, Hagman J. From hematopoietic progenitors to B cells: mechanisms of lineage restriction and commitment. Curr Opin Immunol. 2010; 22(2): 177–184.
  9. Mazzucchelli R, Durum SK. Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol. 2007; 7(2): 144–154.
  10. Barata JT, Silva A, Brandao JG, et al. Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J Exp Med. 2004; 200(5): 659–669.
  11. Canté-Barrett K, Spijkers-Hagelstein JAP, Buijs-Gladdines JG, et al. MEK and PI3K-AKT inhibitors synergistically block activated IL7 receptor signaling in T-cell acute lymphoblastic leukemia. Leukemia. 2016; 30(9): 1832–1843.
  12. Lodewijckx I, Cools J. Deregulation of the interleukin-7 signaling pathway in lymphoid malignancies. Pharmaceuticals (Basel). 2021; 14(5).
  13. Metcalf D. Hematopoietic cytokines. Blood. 2008; 111(2): 485–491.
  14. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002; 100(5): 1532–1542.
  15. Broudy VC, Lin NL, Kaminski WE, et al. Isolation and characterization of a monoclonal antibody that recognizes the human c-kit receptor. Blood. 1992; 79(2): 338–346.
  16. Rönnstrand L. Signal transduction via the stem cell factor receptor/c-Kit. Cell Mol Life Sci. 2004; 61(19-20): 2535–2548.
  17. Baker SJ, Rane SG, Reddy EP. Hematopoietic cytokine receptor signaling. Oncogene. 2007; 26(47): 6724–6737.
  18. Jatiani SS, Baker SJ, Silverman LR, et al. Jak/STAT pathways in cytokine signaling and myeloproliferative disorders: approaches for targeted therapies. Genes Cancer. 2010; 1(10): 979–993.
  19. Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007; 282(28): 20059–20063.
  20. Khwaja A. The role of Janus kinases in haemopoiesis and haematological malignancy. Br J Haematol. 2006; 134(4): 366–384.
  21. Okay M, Haznedaroglu IC. Protein kinases in hematological disorders. Adv Exp Med Biol. 2021; 1275: 383–393.
  22. Funakoshi-Tago M, Tago K, Kasahara T, et al. Negative regulation of Jak2 by its auto-phosphorylation at tyrosine 913 via the Epo signaling pathway. Cell Signal. 2008; 20(11): 1995–2001.
  23. Wilks AF, Harpur AG, Kurban RR, et al. Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol Cell Biol. 1991; 11(4): 2057–2065.
  24. Feng J, Witthuhn BA, Matsuda T, et al. Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol. 1997; 17(5): 2497–2501.
  25. Liu KD, Gaffen SL, Goldsmith MA, et al. Janus kinases in interleukin-2-mediated signaling: JAK1 and JAK3 are differentially regulated by tyrosine phosphorylation. Curr Biol. 1997; 7(11): 817–826.
  26. Saharinen P, Takaluoma K, Silvennoinen O. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol. 2000; 20(10): 3387–3395.
  27. Lindauer K, Loerting T, Liedl KR, et al. Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. Protein Eng. 2001; 14(1): 27–37.
  28. Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem. 2002; 277(49): 47954–47963.
  29. Saharinen P, Vihinen M, Silvennoinen O. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol Biol Cell. 2003; 14(4): 1448–1459.
  30. Xu P, Shen P, Yu B, et al. Janus kinases (JAKs): the efficient therapeutic targets for autoimmune diseases and myeloproliferative disorders. Eur J Med Chem. 2020; 192: 112155.
  31. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005; 352(17): 1779–1790.
  32. Fasouli ES, Katsantoni E. JAK-STAT in early hematopoiesis and leukemia. Front Cell Dev Biol. 2021; 9: 669363.
  33. Bousoik E, Montazeri Aliabadi H. "Do we know Jack" About JAK? A closer look at JAK/STAT signaling pathway. Front Oncol. 2018; 8: 287.
  34. Wang Z, Bunting KD. STAT5 in hematopoietic stem cell biology and transplantation. JAKSTAT. 2013; 2(4): e27159.
  35. Kleppe M, Spitzer MH, Li S, et al. Jak1 integrates cytokine sensing to regulate hematopoietic stem cell function and stress hematopoiesis. Cell Stem Cell. 2017; 21(4): 489–501.e7.
  36. Neubauer H, Cumano A, Müller M, et al. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998; 93(3): 397–409.
  37. Parganas E, Wang D, Stravopodis D, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998; 93(3): 385–395.
  38. Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT. Science. 2002; 296(5573): 1653–1655.
  39. Copeland NG, Gilbert DJ, Schindler C, et al. Distribution of the mammalian Stat gene family in mouse chromosomes. Genomics. 1995; 29(1): 225–228.
  40. Vinkemeier U, Moarefi I, Darnell JE, et al. Structure of the amino-terminal protein interaction domain of STAT-4. Science. 1998; 279(5353): 1048–1052.
  41. Chen X, Vinkemeier U, Zhao Y, et al. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell. 1998; 93(5): 827–839.
  42. Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci. 2018; 27(12): 1984–2009.
  43. Lee CK, Smith E, Gimeno R, et al. STAT1 affects lymphocyte survival and proliferation partially independent of its role downstream of IFN-gamma. J Immunol. 2000; 164(3): 1286–1292.
  44. Boisson-Dupuis S, Kong XF, Okada S, et al. Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes. Curr Opin Immunol. 2012; 24(4): 364–378.
  45. Bhattacharya S, Eckner R, Grossman S, et al. Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha. Nature. 1996; 383(6598): 344–347.
  46. Dasgupta M, Dermawan JK, Willard B, et al. STAT3-driven transcription depends upon the dimethylation of K49 by EZH2. Proc Natl Acad Sci U S A. 2015; 112(13): 3985–3990.
  47. Ma X, Nakayamada S, Kubo S, et al. Expansion of T follicular helper-T helper 1 like cells through epigenetic regulation by signal transducer and activator of transcription factors. Ann Rheum Dis. 2018; 77(9): 1354–1361.
  48. Kane A, Deenick EK, Ma CS, et al. STAT3 is a central regulator of lymphocyte differentiation and function. Curr Opin Immunol. 2014; 28: 49–57.
  49. Teng TS, Lin B, Manser Ed, et al. Stat3 promotes directional cell migration by regulating Rac1 activity via its activator betaPIX. J Cell Sci. 2009; 122(Pt 22): 4150–4159.
  50. Agnello D, Lankford CSR, Bream J, et al. Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J Clin Immunol. 2003; 23(3): 147–161.
  51. Kaplan MH. STAT4: a critical regulator of inflammation in vivo. Immunol Res. 2005; 31(3): 231–242.
  52. Nosaka T, Kawashima T, Misawa K, et al. STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J. 1999; 18(17): 4754–4765.
  53. Karpathiou G, Papoudou-Bai A, Ferrand E, et al. STAT6: A review of a signaling pathway implicated in various diseases with a special emphasis in its usefulness in pathology. Pathol Res Pract. 2021; 223: 153477.
  54. Shuai K, Stark GR, Kerr IM, et al. A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science. 1993; 261(5129): 1744–1746.
  55. Ihle JN, Ihle JN, Nosaka T, et al. The Janus protein tyrosine kinase family and its role in cytokine signaling. Adv Immunol. 1995; 60(2): 1–35.
  56. Levy DE, Darnell JE. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002; 3(9): 651–662.
  57. Fagerlund R, Mélen K, Kinnunen L, et al. Arginine/lysine-rich nuclear localization signals mediate interactions between dimeric STATs and importin alpha 5. J Biol Chem. 2002; 277(33): 30072–30078.
  58. McBride KM, Banninger G, McDonald C, et al. Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-alpha. EMBO J. 2002; 21(7): 1754–1763.
  59. Liu L, McBride KM, Reich NC. STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-alpha3. Proc Natl Acad Sci USA. 2005; 102(23): 8150–8155.
  60. Ma J, Cao X. Regulation of Stat3 nuclear import by importin alpha5 and importin alpha7 via two different functional sequence elements. Cell Signal. 2006; 18(8): 1117–1126.
  61. Haspel RL, Darnell JE. A nuclear protein tyrosine phosphatase is required for the inactivation of Stat1. Proc Natl Acad Sci USA. 1999; 96(18): 10188–10193.
  62. Shi S, Larson K, Guo D, et al. Drosophila STAT is required for directly maintaining HP1 localization and heterochromatin stability. Nat Cell Biol. 2008; 10(4): 489–496.
  63. Vinkemeier U. Getting the message across, STAT! Design principles of a molecular signaling circuit. J Cell Biol. 2004; 167(2): 197–201.
  64. Yang J, Stark GR. Roles of unphosphorylated STATs in signaling. Cell Res. 2008; 18(4): 443–451.
  65. Mazewski C, Perez RE, Fish EN, et al. Type I interferon (IFN)-regulated activation of canonical and non-canonical signaling pathways. Front Immunol. 2020; 11: 606456.
  66. Jia R, Kralovics R. Progress in elucidation of molecular pathophysiology of myeloproliferative neoplasms and its application to therapeutic decisions. Int J Hematol. 2020; 111(2): 182–191.
  67. James C, Ugo V, Couédic JPLe, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005; 434(7037): 1144–1148.
  68. Baxter E, Scott L, Campbell P, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005; 365(9464): 1054–1061.
  69. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005; 7(4): 387–397.
  70. Delhommeau F, Dupont S, Tonetti C, et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood. 2007; 109(1): 71–77.
  71. Ishii T, Bruno E, Hoffman R, et al. Involvement of various hematopoietic-cell lineages by the JAK2V617F mutation in polycythemia vera. Blood. 2006; 108(9): 3128–3134.
  72. O'Sullivan J, Mead AJ. Heterogeneity in myeloproliferative neoplasms: causes and consequences. Adv Biol Regul. 2019; 71: 55–68.
  73. Ortmann CA, Kent D, Nangalia J, et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015; 372(7): 601–612.
  74. Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007; 356(5): 459–468.
  75. Maddali M, Kulkarni UP, Ravindra N, et al. JAK2 exon 12 mutations in cases with JAK2V617F-negative polycythemia vera and primary myelofibrosis. Ann Hematol. 2020; 99(5): 983–989.
  76. Passamonti F, Elena C, Schnittger S, et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood. 2011; 117(10): 2813–2816.
  77. Flex E, Petrangeli V, Stella L, et al. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med. 2008; 205(4): 751–758.
  78. Li F, Guo HY, Wang M, et al. The effects of R683S (G) genetic mutations on the JAK2 activity, structure and stability. Int J Biol Macromol. 2013; 60: 186–195.
  79. Panagopoulos I, Gorunova L, Spetalen S, et al. FFusion of the genes ataxin 2 like, ATXN2L, and Janus kinase 2, JAK2, in cutaneous CD4 positive T-cell lymphoma. Oncotarget. 2017; 8(61): 103775–103784.
  80. Sharma A, Oishi N, Boddicker RL, et al. Recurrent fusions in indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. Blood. 2018; 131(20): 2262–2266.
  81. Shahmarvand N, Nagy A, Shahryari J, et al. Mutations in the signal transducer and activator of transcription family of genes in cancer. Cancer Sci. 2018; 109(4): 926–933.
  82. Cross NCP, Hoade Y, Tapper WJ, et al. Recurrent activating STAT5B N642H mutation in myeloid neoplasms with eosinophilia. Leukemia. 2019; 33(2): 415–425.
  83. Ariyoshi K, Nosaka T, Yamada K, et al. Constitutive activation of STAT5 by a point mutation in the SH2 domain. J Biol Chem. 2000; 275(32): 24407–24413.
  84. Heppler LN, Frank DA. Rare mutations provide unique insight into oncogenic potential of STAT transcription factors. J Clin Invest. 2018; 128(1): 113–115.
  85. McKinney M, Moffitt AB, Gaulard P, et al. The genetic basis of hepatosplenic T-cell lymphoma. Cancer Discov. 2017; 7(4): 369–379.
  86. Pham HaT, Hengstschläger M, Moriggl R. A haunted beast: targeting STAT5B in T-cell neoplasia. Mol Cell Oncol. 2018; 5(3): e1435181.
  87. Luo Q, Shen J, Yang Y, et al. CSF3R T618I, ASXL1 G942 fs and STAT5B N642H trimutation co-contribute to a rare chronic neutrophilic leukaemia manifested by rapidly progressive leucocytosis, severe infections, persistent fever and deep venous thrombosis. Br J Haematol. 2018; 180(6): 892–894.
  88. de Araujo ED, Erdogan F, Neubauer HA, et al. Structural and functional consequences of the STAT5B driver mutation. Nat Commun. 2019; 10(1): 2517.
  89. Gouilleux-Gruart V, Debierre-Grockiego F, Gouilleux F, et al. Activated Stat related transcription factors in acute leukemia. Leuk Lymphoma. 1997; 28(1-2): 83–88.
  90. Gouilleux-Gruart V, Gouilleux F, Desaint C, et al. STAT-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients. Blood. 1996; 87(5): 1692–1697.
  91. Kovacic B, Stoiber D, Moriggl R, et al. STAT1 acts as a tumor promoter for leukemia development. Cancer Cell. 2006; 10(1): 77–87.
  92. Moriggl R, Sexl V, Kenner L, et al. Stat5 tetramer formation is associated with leukemogenesis. Cancer Cell. 2005; 7(1): 87–99.
  93. Friedbichler K, Kerenyi MA, Kovacic B, et al. Stat5a serine 725 and 779 phosphorylation is a prerequisite for hematopoietic transformation. Blood. 2010; 116(9): 1548–1558.
  94. Hoelbl A, Kovacic B, Kerenyi MA, et al. Clarifying the role of Stat5 in lymphoid development and Abelson-induced transformation. Blood. 2006; 107(12): 4898–4906.
  95. Ferbeyre G, Moriggl R. The role of Stat5 transcription factors as tumor suppressors or oncogenes. Biochim Biophys Acta. 2011; 1815(1): 104–114.
  96. Yu H, Jove R. The STATs of cancer — new molecular targets come of age. Nat Rev Cancer. 2004; 4(2): 97–105.
  97. Li G, Miskimen KL, Wang Z, et al. STAT5 requires the N-domain for suppression of miR15/16, induction of bcl-2, and survival signaling in myeloproliferative disease. Blood. 2010; 115(7): 1416–1424.
  98. Sonkin D, Palmer M, Rong X, et al. The identification and characterization of a STAT5 gene signature in hematologic malignancies. Cancer Biomark. 2015; 15(1): 79–87.
  99. Dagvadorj A, Kirken RA, Leiby B, et al. Transcription factor signal transducer and activator of transcription 5 promotes growth of human prostate cancer cells in vivo. Clin Cancer Res. 2008; 14(5): 1317–1324.
  100. Brachet-Botineau M, Polomski M, Neubauer HA, et al. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers (Basel). 2020; 12(1).
  101. Tran VT, Phan TT, Mac HP, et al. The diagnostic power of CD117, CD13, CD56, CD64, and MPO in rapid screening acute promyelocytic leukemia. BMC Res Notes. 2020; 13(1): 394.
  102. Maurer B, Kollmann S, Pickem J, et al. STAT5A and STAT5B-twins with different personalities in hematopoiesis and leukemia. Cancers (Basel). 2019; 11(11).
  103. Pham HaT, Maurer B, Prchal-Murphy M, et al. STAT5BN642H is a driver mutation for T cell neoplasia. J Clin Invest. 2018; 128(1): 387–401.
  104. Mosquera Orgueira A, Ferreiro Ferro R, Díaz Arias JÁ, et al. Detection of new drivers of frequent B-cell lymphoid neoplasms using an integrated analysis of whole genomes. PLoS One. 2021; 16(5): e0248886.
  105. Tiacci E, Ladewig E, Schiavoni G, et al. Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood. 2018; 131(22): 2454–2465.
  106. Zenatti PP, Ribeiro D, Li W, et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet. 2011; 43(10): 932–939.
  107. Shochat C, Tal N, Bandapalli OR, et al. Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias. J Exp Med. 2011; 208(5): 901–908.
  108. Zhang J, Ding Li, Holmfeldt L, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012; 481(7380): 157–163.
  109. Roberts KG, Li Y, Payne-Turner D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014; 371(11): 1005–1015.
  110. Roberts KG, Morin RD, Zhang J, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012; 22(2): 153–166.
  111. Roberts KG, Yang YL, Payne-Turner D, et al. Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. Blood Adv. 2017; 1(20): 1657–1671.
  112. Yoda A, Yoda Y, Chiaretti S, et al. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2010; 107(1): 252–257.
  113. Lu X, Gross AW, Lodish HF. Active conformation of the erythropoietin receptor: random and cysteine-scanning mutagenesis of the extracellular juxtamembrane and transmembrane domains. J Biol Chem. 2006; 281(11): 7002–7011.
  114. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013; 369(25): 2391–2405.
  115. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013; 369(25): 2379–2390.
  116. Michalak M, Corbett EF, Mesaeli N, et al. Calreticulin: one protein, one gene, many functions. Biochem J. 1999; 344 Pt 2: 281–292.
  117. Wijeyesakere SJ, Rizvi SM, Raghavan M. Glycan-dependent and -independent interactions contribute to cellular substrate recruitment by calreticulin. J Biol Chem. 2013; 288(49): 35104–35116.
  118. Araki M, Yang Y, Masubuchi N, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 2016; 127(10): 1307–1316.
  119. Elf S, Abdelfattah NS, Chen E, et al. Mutant calreticulin requires both its mutant C-terminus and the thrombopoietin receptor for oncogenic transformation. Cancer Discov. 2016; 6(4): 368–381.
  120. Edahiro Y, Araki M, Komatsu N. Mechanism underlying the development of myeloproliferative neoplasms through mutant calreticulin. Cancer Sci. 2020; 111(8): 2682–2688.
  121. Chachoua I, Pecquet C, El-Khoury M, et al. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood. 2016; 127(10): 1317–1324.
  122. de Graaf CA, Metcalf D. Thrombopoietin and hematopoietic stem cells. Cell Cycle. 2011; 10(10): 1582–1589.
  123. Qian H, Buza-Vidas N, Hyland CD, et al. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell. 2007; 1(6): 671–684.
  124. Ballmaier M, Germeshausen M. Congenital amegakaryocytic thrombocytopenia: clinical presentation, diagnosis, and treatment. Semin Thromb Hemost. 2011; 37(6): 673–681.
  125. Seo A, Ben-Harosh M, Sirin M, et al. Bone marrow failure unresponsive to bone marrow transplant is caused by mutations in . Blood. 2017; 130(7): 875–880.
  126. Gurney AL, Carver-Moore K, de Sauvage FJ, et al. Thrombocytopenia in c-mpl-deficient mice. Science. 1994; 265(5177): 1445–1447.
  127. Hitchcock IS, Kaushansky K. Thrombopoietin from beginning to end. Br J Haematol. 2014; 165(2): 259–268.
  128. Kaushansky K. The molecular mechanisms that control thrombopoiesis. J Clin Invest. 2005; 115(12): 3339–3347.
  129. Varghese LN, Defour JP, Pecquet C, et al. The thrombopoietin receptor: structural basis of traffic and activation by ligand, mutations, agonists, and mutated calreticulin. Front Endocrinol (Lausanne). 2017; 8: 59.
  130. Pecquet C, Staerk J, Chaligné R, et al. Induction of myeloproliferative disorder and myelofibrosis by thrombopoietin receptor W515 mutants is mediated by cytosolic tyrosine 112 of the receptor. Blood. 2010; 115(5): 1037–1048.
  131. Vainchenker W, Plo I, Marty C, et al. The role of the thrombopoietin receptor MPL in myeloproliferative neoplasms: recent findings and potential therapeutic applications. Expert Rev Hematol. 2019; 12(6): 437–448.
  132. Ding J, Komatsu H, Wakita A, et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood. 2004; 103(11): 4198–4200.
  133. Abe M, Suzuki K, Inagaki O, et al. A novel MPL point mutation resulting in thrombopoietin-independent activation. Leukemia. 2002; 16(8): 1500–1506.
  134. Moskowitz AJ, Jacobsen E, Ruan J, et al. Durable responses observed with JAK inhibition in T-cell lymphomas. Blood. 2018; 132(Suppl 1): 2922–2922.
  135. Horwitz SM, Feldman T, Hess B, et al. The novel SYK/JAK inhibitor cerdulatinib demonstrates good tolerability and clinical response in a phase 2a study in relapsed/refractory peripheral T-cell lymphoma and cutaneous T-cell lymphoma. Blood. 2018; 132(Supplement 1): 1001–1001.
  136. Lv K, Li X, Yu H, et al. Selection of new immunotherapy targets for NK/T cell lymphoma. Am J Transl Res. 2020; 12(11): 7034–7047.
  137. Nairismägi M-L, Gerritsen ME, Li ZM, et al. Oncogenic activation of JAK3-STAT signaling confers clinical sensitivity to PRN371, a novel selective and potent JAK3 inhibitor, in natural killer/T-cell lymphoma. Leukemia. 2018; 32(5): 1147–1156.
  138. Iqbal J, Amador C, McKeithan TW, et al. Molecular and genomic landscape of peripheral T-cell lymphoma. Cancer Treat Res. 2019; 176: 31–68.

Hematology in Clinical Practice