open access

Vol 94, No 12 (2023)
Review paper
Published online: 2023-08-21
Get Citation

MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in endometriosis — review of literature

Tomasz Szaflik1, Hanna Romanowicz2, Krzysztof Szyllo1, Beata Smolarz2
·
Pubmed: 37602417
·
Ginekol Pol 2023;94(12):997-1003.
Affiliations
  1. Department of Gynecology, Oncological Gynecology and Endometriosis Treatment, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland, Poland
  2. Laboratory of Cancer Genetics, Department of Pathology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland

open access

Vol 94, No 12 (2023)
REVIEW PAPERS Gynecology
Published online: 2023-08-21

Abstract

Endometriosis is a disease of the female genital organs, the causes of which are not fully understood. Recent studies have shown that non-coding RNAs (ncRNAs) like long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) can contribute to the pathogenesis of endometriosis. Profiling of miRNA and lncRNA expression is carried out using state-of-the-art molecular biology techniques (RT-PCR, sequencing, microarray analysis). The use of the latest technologies may make it possible to establish a genetic profile, which is a promising prospect for early diagnosis of endometriosis. In the future, genetic testing may become the gold diagnostic standard and eliminate invasive laparoscopy. In the case of endometriosis, it is important to extend the research to molecular aspects, which may facilitate the diagnosis of the disease or indicate new (based for example ncRNA) treatment methods. The paper presents the latest data on the importance of miRNA/lncRNA in endometriosis.

Abstract

Endometriosis is a disease of the female genital organs, the causes of which are not fully understood. Recent studies have shown that non-coding RNAs (ncRNAs) like long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) can contribute to the pathogenesis of endometriosis. Profiling of miRNA and lncRNA expression is carried out using state-of-the-art molecular biology techniques (RT-PCR, sequencing, microarray analysis). The use of the latest technologies may make it possible to establish a genetic profile, which is a promising prospect for early diagnosis of endometriosis. In the future, genetic testing may become the gold diagnostic standard and eliminate invasive laparoscopy. In the case of endometriosis, it is important to extend the research to molecular aspects, which may facilitate the diagnosis of the disease or indicate new (based for example ncRNA) treatment methods. The paper presents the latest data on the importance of miRNA/lncRNA in endometriosis.

Get Citation

Keywords

endometriosis; miRNA; lncRNA

About this article
Title

MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in endometriosis — review of literature

Journal

Ginekologia Polska

Issue

Vol 94, No 12 (2023)

Article type

Review paper

Pages

997-1003

Published online

2023-08-21

Page views

603

Article views/downloads

430

DOI

10.5603/gpl.95968

Pubmed

37602417

Bibliographic record

Ginekol Pol 2023;94(12):997-1003.

Keywords

endometriosis
miRNA
lncRNA

Authors

Tomasz Szaflik
Hanna Romanowicz
Krzysztof Szyllo
Beata Smolarz

References (56)
  1. França PR, Lontra AC, Fernandes PD. Endometriosis: A Disease with Few Direct Treatment Options. Molecules. 2022; 27(13).
  2. Bafort C, Beebeejaun Y, Tomassetti C, et al. Laparoscopic surgery for endometriosis. Cochrane Database Syst Rev. 2020; 10(10): CD011031.
  3. Parasar P, Ozcan P, Terry KL. Endometriosis: Epidemiology, Diagnosis and Clinical Management. Curr Obstet Gynecol Rep. 2017; 6(1): 34–41.
  4. Ma He, Sun X, Wang Y, et al. Integrated analysis identified novel miRNAs and mRNA in endometriosis. Ginekol Pol. 2022 [Epub ahead of print].
  5. Maier IM, Maier AC. miRNAs and lncRNAs: Potential Non-Invasive Biomarkers for Endometriosis. Biomedicines. 2021; 9(11).
  6. Panir K, Schjenken JE, Robertson SA, et al. Non-coding RNAs in endometriosis: a narrative review. Hum Reprod Update. 2018; 24(4): 497–515.
  7. Nisenblat V, Sharkey DJ, Wang Z, et al. Plasma miRNAs Display Limited Potential as Diagnostic Tools for Endometriosis. J Clin Endocrinol Metab. 2019; 104(6): 1999–2022.
  8. Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science. 2001; 294(5543): 853–858.
  9. Grenda A, Budzyński M, Filip A. Biogenesis of microRNAs and their role in the development and course of selected hematologic disorders. Postępy Higieny i Medycyny Doświadczalnej. 2013; 67: 174–185.
  10. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116(2): 281–297.
  11. Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol. 2014; 51(4): 759–774.
  12. Budzyński M, Grenda A, Filip A. Cząsteczki mikroRNA jako istotny składnik mechanizmów regulacji ekspresji genów związanych z nowotworami. Nowotwory. Journal of Oncology. 2014; 64(1): 48–60.
  13. Sahin C, Mamillapalli R, Yi KW, et al. microRNA Let-7b: A Novel treatment for endometriosis. J Cell Mol Med. 2018; 22(11): 5346–5353.
  14. Liu Y, Chen J, Zhu X, et al. Role of miR‑449b‑3p in endometriosis via effects on endometrial stromal cell proliferation and angiogenesis. Mol Med Rep. 2018; 18(3): 3359–3365.
  15. Rekker K, Tasa T, Saare M, et al. Differentially-Expressed miRNAs in Ectopic Stromal Cells Contribute to Endometriosis Development: The Plausible Role of miR-139-5p and miR-375. Int J Mol Sci. 2018; 19(12).
  16. Laudanski P, Charkiewicz R, Tolwinska A, et al. Profiling of Selected MicroRNAs in Proliferative Eutopic Endometrium of Women with Ovarian Endometriosis. Biomed Res Int. 2015; 2015: 1–10.
  17. Laudanski P, Charkiewicz R, Tolwinska A, et al. MicroRNAs expression profiling of eutopic proliferative endometrium in women with ovarian endometriosis. Reprod Biol Endocrinol. 2013; 11: 78.
  18. Zhuo Z, Wang C, Yu H. Plasma microRNAs can be a potential diagnostic biomarker for endometriosis. Ginekol Pol. 2022; 93(6): 450–459.
  19. Vanhie A, O D, Peterse D, et al. Plasma miRNAs as biomarkers for endometriosis. Hum Reprod. 2019; 34(9): 1650–1660.
  20. Coutinho LM, Ferreira MC, Rocha AL, et al. New biomarkers in endometriosis. Adv Clin Chem. 2019; 89: 59–77.
  21. Bjorkman S, Taylor HS, Bjorkman S, et al. MicroRNAs in endometriosis: biological function and emerging biomarker candidates†. Biol Reprod. 2019; 100(5): 1135–1146.
  22. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001; 291(5507): 1304–1351.
  23. Jarroux J, Morillon A, Pinskaya M. History, Discovery, and Classification of lncRNAs. Adv Exp Med Biol. 2017; 1008: 1–46.
  24. Marciniak M. Imprinting genomowy u ssaków: najnowsze doniesienia. Postępy Biologii Komórki. 2008; 35(2): 243–257.
  25. Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature. 1991; 351(6322): 153–155.
  26. Martinet C, Monnier P, Louault Y, et al. The H19 gene: regulation and function of a non-coding RNA. Cytogenet Genome Res. 2006; 113(1-4): 188–193.
  27. Barlow DP, Stöger R, Herrmann BG, et al. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature. 1991; 349(6304): 84–87.
  28. Brannan CI, Dees EC, Ingram RS, et al. The product of the H19 gene may function as an RNA. Mol Cell Biol. 1990; 10(1): 28–36.
  29. Brockdorff N, Ashworth A, Kay GF, et al. Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature. 1991; 351(6324): 329–331.
  30. LYON MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961; 190: 372–373.
  31. Ayupe AC, Tahira AC, Camargo L, et al. Global analysis of biogenesis, stability and sub-cellular localization of lncRNAs mapping to intragenic regions of the human genome. RNA Biol. 2015; 12(8): 877–892.
  32. Ward M, McEwan C, Mills JD, et al. Conservation and tissue-specific transcription patterns of long noncoding RNAs. J Hum Transcr. 2015; 1(1): 2–9.
  33. Jiang C, Li Y, Zhao Z, et al. Identifying and functionally characterizing tissue-specific and ubiquitously expressed human lncRNAs. Oncotarget. 2016; 7(6): 7120–7133.
  34. Giannakakis A, Zhang J, Jenjaroenpun P, et al. Contrasting expression patterns of coding and noncoding parts of the human genome upon oxidative stress. Sci Rep. 2015; 5: 9737.
  35. Johnsson P, Lipovich L, Grandér D, et al. Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta. 2014; 1840(3): 1063–1071.
  36. Kopp F, Mendell JT. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell. 2018; 172(3): 393–407.
  37. Latos P, Pauler F, Koerner M, et al. Airn Transcriptional Overlap, But Not Its lncRNA Products, Induces Imprinted Igf2r Silencing. Science. 2012; 338(6113): 1469–1472.
  38. Engreitz JM, Haines JE, Perez EM, et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature. 2016; 539(7629): 452–455.
  39. Sigova AA, Abraham BJ, Ji X, et al. Transcription factor trapping by RNA in gene regulatory elements. Science. 2015; 350(6263): 978–981.
  40. Schmitt AM, Chang HY. Long Noncoding RNAs in Cancer Pathways. Cancer Cell. 2016; 29(4): 452–463.
  41. Chang CYY, Tseng CC, Lai MT, et al. Genetic impacts on thermostability of onco-lncRNA HOTAIR during the development and progression of endometriosis. PLoS One. 2021; 16(3): e0248168.
  42. Szaflik T, Romanowicz H, Szyłło K, et al. Analysis of Long Non-Coding RNA (lncRNA) UCA1, MALAT1, TC0101441, and H19 Expression in Endometriosis. Int J Mol Sci. 2022; 23(19).
  43. Zhou C, Zhang T, Liu F, et al. The differential expression of mRNAs and long noncoding RNAs between ectopic and eutopic endometria provides new insights into adenomyosis. Mol Biosyst. 2016; 12(2): 362–370.
  44. Panir K, Schjenken JE, Robertson SA, et al. Non-coding RNAs in endometriosis: a narrative review. Hum Reprod Update. 2018; 24(4): 497–515.
  45. Agrawal S, Tapmeier T, Rahmioglu N, et al. The miRNA Mirage: How Close Are We to Finding a Non-Invasive Diagnostic Biomarker in Endometriosis? A Systematic Review. Int J Mol Sci. 2018; 19(2).
  46. Ghazal S, McKinnon B, Zhou J, et al. H19 lncRNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis. EMBO Mol Med. 2015; 7(8): 996–1003.
  47. Huang J, Yang Y, Fang F, et al. MALAT1 modulates the autophagy of retinoblastoma cell through miR-124-mediated stx17 regulation. J Cell Biochem. 2018; 119(5): 3853–3863.
  48. Zhao Yu, Yang Y, Trovik J, et al. A novel wnt regulatory axis in endometrioid endometrial cancer. Cancer Res. 2014; 74(18): 5103–5117.
  49. Wang WT, Sun YM, Huang W, et al. Genome-wide Long Non-coding RNA Analysis Identified Circulating LncRNAs as Novel Non-invasive Diagnostic Biomarkers for Gynecological Disease. Sci Rep. 2016; 6: 23343.
  50. Huang H, Zhu Z, Song Yu. Downregulation of lncrna uca1 as a diagnostic and prognostic biomarker for ovarian endometriosis. Rev Assoc Med Bras (1992). 2019; 65(3): 336–341.
  51. Qiu JJ, Lin YY, Tang XY, et al. Extracellular vesicle-mediated transfer of the lncRNA-TC0101441 promotes endometriosis migration/invasion. Exp Cell Res. 2020; 388(1): 111815.
  52. Lee G, Choi Y, Hong M, et al. Association of CDKN2B-AS and WNT4 genetic polymorphisms in Korean patients with endometriosis. Fertil Steril. 2014; 102(5): 1393–1397.
  53. Powell JE, Fung JN, Shakhbazov K, et al. Endometriosis risk alleles at 1p36.12 act through inverse regulation of CDC42 and LINC00339. Hum Mol Genet. 2016; 25(22): 5046–5058.
  54. Chang CYY, Tseng CC, Lai MT, et al. Genetic impacts on thermostability of onco-lncRNA HOTAIR during the development and progression of endometriosis. PLoS One. 2021; 16(3): e0248168.
  55. Chen G, Zhang M, Liang Z, et al. Association of polymorphisms in MALAT1 with the risk of endometriosis in Southern Chinese women. Biol Reprod. 2019; 102(4): 943–949.
  56. Wang L, Xing Qi, Feng T, et al. SNP rs710886 A>G in long noncoding RNA PCAT1 is associated with the risk of endometriosis by modulating expression of multiple stemness-related genes via microRNA-145 signaling pathway. J Cell Biochem. 2020; 121(2): 1703–1715.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., ul. Świętokrzyska 73, 80–180 Gdańsk
tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl