Vol 91, No 10 (2020)
Guidelines / Expert consensus
Published online: 2020-10-30

open access

Page views 2827
Article views/downloads 2735
Get Citation

Connect on Social Media

Connect on Social Media

Polish Society of Gynecologists and Obstetricians recommendations on supplementation during pregnancy

Mariusz Zimmer1, Piotr Sieroszewski2, Przemysław Oszukowski2, Hubert Huras3, Tomasz Fuchs1, Agata Pawlosek1
Pubmed: 33184834
Ginekol Pol 2020;91(10):644-653.

Abstract

Polish Society of Gynecologists and Obstetricians
recommendations on supplementation during pregnancy

Article available in PDF format

View PDF Download PDF file

References

  1. Siró I, Kápolna E, Kápolna B, et al. Functional food. Product development, marketing and consumer acceptance--a review. Appetite. 2008; 51(3): 456–467.
  2. Brown B, Wright C. Safety and efficacy of supplements in pregnancy. Nutr Rev. 2020; 78(10): 813–826.
  3. Milman NT. Dietary Iron Intake in Pregnant Women in Europe: A Review of 24 Studies from 14 Countries in the Period 1991-2014. J Nutr Metab. 2020; 2020: 7102190.
  4. World Health Organization. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Geneva, 2011.
  5. Sułek K. Problemy hematologiczne w położnictwie i ginekologii. Pytania i odpowiedzi. Medycyna Praktyczna, Kraków 2015.
  6. Bręborowicz GH. Położnictwo Tom 2 Medycyna Matczyno-Płodowa. PZWL, Warszawa 2012.
  7. Centers for Disease Control and Prevention (CDC). Recommendations to prevent and control iron deficiency in the United States. Centers for Disease Control and Prevention. MMWR Recomm Rep. 1998; 47(RR-3): 1–29.
  8. World Health Organization. The global prevalence of Anaemia in 2011. Geneva, 2015.
  9. RCOG statement: Study claims multivitamin and mineral supplements for pregnant women aren't needed. https://www.rcog.org.uk/en/news/rcog-statement-studyclaims-multivitamin-and-mineral-supplements-for-pregnant-women-arent-needed/ (19.05.2020).
  10. Royal Australian and New Zealand College of Obstetricians and Gynaecologists. Vitamin and mineral supplementation and pregnancy. https://www.hps.com.au/wpcontent/uploads/2019/04/Vitamin-and-mineral-supplementation-in-pregnancy-CObs-25-Review-Nov-2014-Amended-May-2015.pdf (19.05.2020).
  11. Hansen JB, Tonnesen MF, Madsen AN, et al. Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic β cell fate in response to cytokines. Cell Metab. 2012; 16(4): 449–461.
  12. Hansen JB, Moen IW, Mandrup-Poulsen T. Iron: the hard player in diabetes pathophysiology. Acta Physiol (Oxf). 2014; 210(4): 717–732.
  13. Jirakittidul P, Sirichotiyakul S, Ruengorn C, et al. Effect of iron supplementation during early pregnancy on the development of gestational hypertension and pre-eclampsia. Arch Gynecol Obstet. 2018; 298(3): 545–550.
  14. Maitra S, Mukthapuram A, Huligol G, et al. Increased Serum Ferritin and Iron Levels in Preeclampsia. IOSR. 2019; 5(2): 50–52.
  15. Shaji Geetha N, Bobby Z, Dorairajan G, et al. Increased hepcidin levels in preeclampsia: a protective mechanism against iron overload mediated oxidative stress? J Matern Fetal Neonatal Med. 2020 [Epub ahead of print]: 1–6.
  16. Cheng Y, Li T, He M, et al. The association of elevated serum ferritin concentration in early pregnancy with gestational diabetes mellitus: a prospective observational study. Eur J Clin Nutr. 2020; 74(5): 741–748.
  17. McElduff A, Rawal S, Hinkle SN, et al. A longitudinal study of iron status during pregnancy and the risk of gestational diabetes: findings from a prospective, multiracial cohort. Diabetologia. 2017; 60(2): 249–257.
  18. Kataria Y, Wu Y, Horskjær Pd, et al. Iron Status and Gestational Diabetes-A Meta-Analysis. Nutrients. 2018; 10(5).
  19. Zhao L, Lian J, Tian J, et al. Dietary intake of heme iron and body iron status are associated with the risk of gestational diabetes mellitus: a systematic review and metaanalysis. Asia Pac J Clin Nutr. 2017; 26(6): 1092–1106.
  20. Zhang C, Rawal S. Dietary iron intake, iron status, and gestational diabetes. Am J Clin Nutr. 2017; 106(Suppl 6): 1672S–1680S.
  21. Helin A, Kinnunen TI, Raitanen J, et al. Iron intake, haemoglobin and risk of gestational diabetes: a prospective cohort study. BMJ Open. 2012; 2(5).
  22. Karowicz-Bilińska A, Nowak-Markwitz E. Rekomendacje Polskiego Towarzystwa Ginekologicznego w zakresie stosowania witamin i mikroelementów u kobiet planujących ciążę, ciężarnych i karmiących. Ginekol Pol. 2014; 85(5): 395–399.
  23. Parchem K, Bartoszek A. Fosfolipidy oraz produkty ich hydrolizy jako żywieniowe czynniki prewencyjne w chorobach cywilizacyjnych. Postepy Hig Med Dosw. 2016; 70: 1343–1361.
  24. Cole GM, Ma QL, Frautschy SA. Omega-3 fatty acids and dementia. Prostaglandins Leukot Essent Fatty Acids. 2009; 81(2-3): 213–221.
  25. Bakouei F, Delavar MA, Mashayekh-Amiri S, et al. Efficacy of n-3 fatty acids supplementation on the prevention of pregnancy induced-hypertension or preeclampsia: A systematic review and meta-analysis. Taiwan J Obstet Gynecol. 2020; 59(1): 8–15.
  26. Kar S, Wong M, Rogozinska E, et al. Effects of omega-3 fatty acids in prevention of early preterm delivery: a systematic review and meta-analysis of randomized studies. Eur J Obstet Gynecol Reprod Biol. 2016; 198: 40–46.
  27. Simmonds LA, Sullivan TR, Skubisz M, et al. Docosahexaenoic Acid and Preterm Birth. Ann Nutr Metab. 2016; 69 Suppl 1(9): 29–34.
  28. Middleton P, Gomersall JC, Gould JF, et al. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst Rev. 2018; 11: CD003402.
  29. Olsen SF, Halldorsson TI, Thorne-Lyman AL, et al. Plasma Concentrations of Long Chain N-3 Fatty Acids in Early and Mid-Pregnancy and Risk of Early Preterm Birth. EBioMedicine. 2018; 35: 325–333.
  30. Jackson KH, Harris WS. A Prenatal DHA Test to Help Identify Women at Increased Risk for Early Preterm Birth: A Proposal. Nutrients. 2018; 10(12).
  31. de Se, Beck KL, Conlon CA. Nutrition in pregnancy. OGRM 2019.
  32. Makrides M, Gibson RA, McPhee AJ, et al. DOMInO Investigative Team. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial. JAMA. 2010; 304(15): 1675–1683.
  33. Makrides M, Best K, Yelland L, et al. A Randomized Trial of Prenatal n-3 Fatty Acid Supplementation and Preterm Delivery. N Engl J Med. 2019; 381(11): 1035–1045.
  34. Carlson SE, Gajewski BJ, Valentine CJ, et al. Assessment of DHA on reducing early preterm birth: the ADORE randomized controlled trial protocol. BMC Pregnancy Childbirth. 2017; 17(1): 62.
  35. Lips P. Vitamin D physiology. Prog Biophys Mol Biol. 2006; 92(1): 4–8.
  36. Thacher TD, Fischer PR, Obadofin MO, et al. Comparison of metabolism of vitamins D2 and D3 in children with nutritional rickets. J Bone Miner Res. 2010; 25(9): 1988–1995.
  37. Hollis BW. Vitamin D status during pregnancy: The importance of getting it right. EBioMedicine. 2019; 39: 23–24.
  38. Ganguly A, Tamblyn JA, Finn-Sell S, et al. Vitamin D, the placenta and early pregnancy: effects on trophoblast function. J Endocrinol. 2018; 236(2): R93–R9R103.
  39. Palacios C, Kostiuk LK, Peña-Rosas JP. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev. 2019; 7: CD008873.
  40. Chen Y, Zhu B, Wu X, et al. Association between maternal vitamin D deficiency and small for gestational age: evidence from a meta-analysis of prospective cohort studies. BMJ Open. 2017; 7(8): e016404.
  41. Milman N, Paszkowski T, Cetin I, et al. Supplementation during pregnancy: beliefs and science. Gynecol Endocrinol. 2016; 32(7): 509–516.
  42. American Association for Clinical Chemistry. "Vitamin D Tests". Lab Tests Online (USA). https://labtestsonline.org/tests/vitamin-d-tests (18.07.2020).
  43. Rusińska A, Płudowski P, Walczak M, et al. Vitamin D Supplementation Guidelines for General Population and Groups at Risk of Vitamin D Deficiency in Poland-Recommendations of the Polish Society of Pediatric Endocrinology and Diabetes and the Expert Panel With Participation of National Specialist Consultants and Representatives of Scientific Societies-2018 Update. Front Endocrinol (Lausanne). 2018; 9: 246.
  44. Wender-Ożegowska E, Bomba-Opoń D, Brązert J, et al. Standardy Polskiego Towarzystwa Ginekologów i Położników postępowania u kobiet z cukrzycą. Ginekologia i Perinatologia Praktyczna. 2017; 2(5): 215–29.
  45. Harding KB, Peña-Rosas JP, Webster AC, et al. Iodine supplementation for women during the preconception, pregnancy and postpartum period. Cochrane Database Syst Rev. 2017; 3: CD011761.
  46. Dineva M, Fishpool H, Rayman MP, et al. Systematic review and meta-analysis of the effects of iodine supplementation on thyroid function and child neurodevelopment in mildly-to-moderately iodine-deficient pregnant women. Am J Clin Nutr. 2020; 112(2): 389–412.
  47. Zimmermann MB, Gizak M, Abbott K, et al. Iodine deficiency in pregnant women in Europe. Lancet Diabetes Endocrinol. 2015; 3(9): 672–674.
  48. Kheradpisheh Z, Mirzaei M, Mahvi AH, et al. Impact of Drinking Water Fluoride on Human Thyroid Hormones: A Case- Control Study. Sci Rep. 2018; 8(1): 2674.
  49. Zhou SJ, Condo D, Ryan P, et al. Association Between Maternal Iodine Intake in Pregnancy and Childhood Neurodevelopment at Age 18 Months. Am J Epidemiol. 2019; 188(2): 332–338.
  50. Dietary Reference Values for nutrients Summary report. EFSA Supporting Publications. 2017; 14(12).
  51. Czeczot H. Kwas foliowy w fizjologii i patologii [Folic acid in physiology and pathology. Postepy Hig Med Dosw. 2008; 62: 405–419.
  52. Farkas M, Keskitalo S, Smith DEC, et al. Hyperhomocysteinemia in Alzheimer's disease: the hen and the egg? J Alzheimers Dis. 2013; 33(4): 1097–1104.
  53. Gąsiorowska D, Korzeniowska K, Jabłecka A. Homocysteina. Farmacja Wspolcz. 2008; 1: 169–175.
  54. Moczulska H, Pesz K, Gach A, et al. Stanowisko ekspertów Polskiego Towarzystwa Genetyki Człowieka i Polskiego Towarzystwa Ginekologów i Położników w sprawie zlecania i interpretacji wyników badań pod kątem wariantów genetycznych w genie MTHFR. Ginekologia i Perinatologia Praktyczna. 2017; 5: 234–238.
  55. Steele JW, Kim SE, Finnell RH. One-carbon metabolism and folate transporter genes: Do they factor prominently in the genetic etiology of neural tube defects? Biochimie. 2020; 173: 27–32.
  56. Arth A, Tinker S, Moore C, et al. Centers for Disease Control and Prevention, Centers for Disease Control and Prevention (CDC), Centers for Disease Control and Prevention (CDC), Centers for Disease Control and Prevention (CDC), Centers for Disease Control and Prevention (CDC), Centers for Disease Control and Prevention (CDC), Centers for Disease Control (CDC). Use of folic acid for prevention of spina bifida and other neural tube defects--1983-1991. MMWR Morb Mortal Wkly Rep. 1991; 40(30): 513–516.
  57. RCOG statement: Study claims too much folate can increase autism risk. https://www.rcog.org.uk/en/news/rcog-statement-study-claims-too-much-folate-canincrease-autism-risk/ (23.07.2020).
  58. Yajnik CS, Deshpande SS, Jackson AA, et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia. 2008; 51(1): 29–38.
  59. Paul L, Selhub J. Interaction between excess folate and low vitamin B12 status. Mol Aspects Med. 2017; 53: 43–47.
  60. Bomba-Opoń D, Hirnle L, Kalinka J, et al. Suplementacja folianów w okresie przedkoncepcyjnym, w ciąży i połogu. Rekomendacje Polskiego Towarzystwa Ginekologów i Położników. Ginekologia i Perinatologia Praktyczna. 2017; 2(5): 210–214.
  61. Czeizel AE, Dudás I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med. 1992; 327(26): 1832–1835.
  62. De Wals P, Van Allen MI, Lowry RB, et al. Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med. 2007; 357(2): 135–142.
  63. Correction: Prevention of Neural-Tube Defects with Folic Acid in China. N Engl J Med. 1999; 341(24): 1864.
  64. Milunsky A, Jick H, Jick SS, et al. Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects. JAMA. 1989; 262(20): 2847–2852.
  65. Castillo-Lancellotti C, Tur JA, Uauy R. Impact of folic acid fortification of flour on neural tube defects: a systematic review. Public Health Nutr. 2013; 16(5): 901–911.
  66. van Gool JD, Hirche H, Lax H, et al. Folic acid and primary prevention of neural tube defects: A review. Reprod Toxicol. 2018; 80: 73–84.
  67. Parker SE, Yazdy MM, Tinker SC, et al. The impact of folic acid intake on the association among diabetes mellitus, obesity, and spina bifida. Am J Obstet Gynecol. 2013; 209(3): 239.e1–239.e8.
  68. Shankar P, Boylan M, Sriram K. Micronutrient deficiencies after bariatric surgery. Nutrition. 2010; 26(11-12): 1031–1037.
  69. Wang M, Wang ZP, Gao LJ, et al. Maternal body mass index and the association between folic acid supplements and neural tube defects. Acta Paediatr. 2013; 102(9): 908–913.
  70. Jędrzejczak J, Bomba-Opoń D, Jakiel G, et al. Managing epilepsy in women of childbearing age - Polish Society of Epileptology and Polish Gynecological Society Guidelines. Ginekol Pol. 2017; 88(5): 278–284.
  71. Obeid R, Schön C, Wilhelm M, et al. The effectiveness of daily supplementation with 400 or 800 µg/day folate in reaching protective red blood folate concentrations in nonpregnant women: a randomized trial. Eur J Nutr. 2018; 57(5): 1771–1780.
  72. Crider KS, Devine O, Qi YP, et al. Systematic Review and Bayesian Meta-analysis of the Dose-response Relationship between Folic Acid Intake and Changes in Blood Folate Concentrations. Nutrients. 2019; 11(1).
  73. Code of Federal Regulations Title 21, Sec. 101.79 Health claims: Folate and neural tube defects. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=101.79 (19.05.2020).
  74. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. National Academies Press, Washington 1998.