Tom 2, Nr 2 (2023)
Praca badawcza (oryginalna)
Opublikowany online: 2023-10-17
Wyświetlenia strony 610
Wyświetlenia/pobrania artykułu 9
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Metabolizm tryptofanu szlakiem kinureninowym w wybranych chorobach reumatycznych — przegląd piśmiennictwa

Joanna Witoszyńska-Sobkowiak1, Dorota Sikorska1, Włodzimierz Samborski1
Forum Reumatologiczne - Edukacja 2023;2(2):51-59.

Streszczenie

W przewlekłych chorobach zapalnych, na skutek działania cytokin prozapalnych, dochodzi do nadmiernej aktywacji enzymu 2,3-dioksygenazy indoloaminy (IDO), co powoduje zwiększenie metabolizmu tryptofanu poprzez szlak kinureninowy (KP, kynurenine pathway). Zarówno IDO, jak i metabolity KP oddziałują na komórki układu immunologicznego, głównie limfocyty T. W ten sposób wywierają działanie immunosupresyjne, ograniczając stan zapalny. Także w chorobach reumatycznych, takich jak: reumatoidalne zapalenie stawów, osteoporoza, choroba zwyrodnieniowa stawów i zesztywniające zapalenie stawów kręgosłupa, stwierdza się nadmierną aktywację KP. W niniejszej publikacji przedstawiono doniesienia na temat zaburzeń metabolizmu tryptofanu stwierdzanych w powyższych jednostkach chorobowych.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Tanaka M, Bohár Z, Vécsei L. Are kynurenines accomplices or principal villains in dementia? Maintenance of kynurenine metabolism. Molecules. 2020; 25(3).
  2. Castro-Portuguez R, Sutphin GL. Kynurenine pathway, NAD+ synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol. 2020; 132: 110841.
  3. Marx W, McGuinness AJ, Rocks T, et al. The kynurenine pathway in major depressive disorder, bipolar disorder, and schizophrenia: a meta-analysis of 101 studies. Mol Psychiatry. 2021; 26(8): 4158–4178.
  4. Wirthgen E, Hoeflich A, Rebl A, et al. Kynurenic acid: the Janus-faced role of an immunomodulatory tryptophan metabolite and its link to pathological conditions. Front Immunol. 2017; 8: 1957.
  5. Tanaka M, Tóth F, Polyák H, et al. Immune influencers in action: metabolites and enzymes of the tryptophan-kynurenine metabolic pathway. Biomedicines. 2021; 9(7): 734.
  6. Mancuso R, Hernis A, Agostini S, et al. Indoleamine 2,3 dioxygenase (IDO) expression and activity in relapsing-remitting multiple sclerosis. PLoS One. 2015; 10(6): e0130715.
  7. Filippini P, Del Papa N, Sambataro D, et al. Emerging concepts on inhibitors of indoleamine 2,3-dioxygenase in rheumatic diseases. Curr Med Chem. 2012; 19(31): 5381–5393.
  8. Nikolaus S, Schulte B, Al-Massad N, et al. Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases. Gastroenterology. 2017; 153(6): 1504–1516.e2.
  9. Eryavuz Onmaz D, Sivrikaya A, Isik K, et al. Altered kynurenine pathway metabolism in patients with ankylosing spondylitis. Int Immunopharmacol. 2021; 99: 108018.
  10. Åkesson K, Pettersson S, Ståhl S, et al. Kynurenine pathway is altered in patients with SLE and associated with severe fatigue. Lupus Sci Med. 2018; 5(1): e000254.
  11. de Oliveira FR, Fantucci MZ, Adriano L, et al. Neurological and inflammatory manifestations in sjögren's syndrome: the role of the kynurenine metabolic pathway. Int J Mol Sci. 2018; 19(12): 3953.
  12. Harden JL, Egilmez NK. Indoleamine 2,3-dioxygenase and dendritic cell tolerogenicity. Immunol Invest. 2012; 41(6-7): 738–764.
  13. Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998; 281(5380): 1191–1193.
  14. Soliman H, Mediavilla-Varela M, Antonia S. Indoleamine 2,3-dioxygenase: is it an immune suppressor? Cancer J. 2010; 16(4): 354–359.
  15. Ravishankar B, Liu H, Shinde R, et al. Tolerance to apoptotic cells is regulated by indoleamine 2,3-dioxygenase. Proc Natl Acad Sci U S A. 2012; 109(10): 3909–3914.
  16. Ogbechi J, Clanchy FI, Huang YS, et al. IDO activation, inflammation and musculoskeletal disease. Exp Gerontol. 2020; 131: 110820.
  17. Williams RO. Exploitation of the IDO pathway in the therapy of rheumatoid arthritis. Int J Tryptophan Res. 2013; 6(Suppl 1): 67–73.
  18. Kim SY, Oh Y, Jo S, et al. Inhibition of human osteoclast differentiation by kynurenine through the aryl-hydrocarbon receptor pathway. Cells. 2021; 10(12): 3498.
  19. Panfili E, Gerli R, Grohmann U, et al. Amino acid metabolism in rheumatoid arthritis: friend or foe? Biomolecules. 2020; 10(9): 1280.
  20. Lin YJ, Anzaghe M, Schülke S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells. 2020; 9(4): 880.
  21. Schroecksnadel K, Kaser S, Ledochowski M, et al. Increased degradation of tryptophan in blood of patients with rheumatoid arthritis. J Rheumatol. 2003; 30(9): 1935–1939.
  22. Igari T, Tsuchizawa M, Shimamura T. Alteration of tryptophan metabolism in the synovial fluid of patients with rheumatoid arthritis and osteoarthritis. Tohoku J Exp Med. 1987; 153(2): 79–86.
  23. Schroecksnadel K, Winkler C, Duftner C, et al. Tryptophan degradation increases with stage in patients with rheumatoid arthritis. Clin Rheumatol. 2006; 25(3): 334–337.
  24. Szántó S, Koreny T, Mikecz K, et al. Inhibition of indoleamine 2,3-dioxygenase-mediated tryptophan catabolism accelerates collagen-induced arthritis in mice. Arthritis Res Ther. 2007; 9(3): R50.
  25. Criado G, Simelyte E, Inglis JJ, et al. Indoleamine 2,3 dioxygenase-mediated tryptophan catabolism regulates accumulation of Th1/Th17 cells in the joint in collagen-induced arthritis. Arthritis Rheum. 2009; 60(5): 1342–1351.
  26. Merlo LMF, Pigott E, DuHadaway JB, et al. IDO2 is a critical mediator of autoantibody production and inflammatory pathogenesis in a mouse model of autoimmune arthritis. J Immunol. 2014; 192(5): 2082–2090.
  27. Prendergast GC, Chang MY, Mandik-Nayak L, et al. Indoleamine 2,3-dioxygenase as a modifier of pathogenic inflammation in cancer and other inflammation-associated diseases. Curr Med Chem. 2011; 18(15): 2257–2262.
  28. Scott GN, DuHadaway J, Pigott E, et al. The immunoregulatory enzyme IDO paradoxically drives B cell-mediated autoimmunity. J Immunol. 2009; 182(12): 7509–7517.
  29. Tykocinski LO, Lauffer AM, Bohnen A, et al. Synovial fibroblasts selectively suppress th1 cell responses through IDO1-mediated tryptophan catabolism. J Immunol. 2017; 198(8): 3109–3117.
  30. Parada-Turska J, Zgrajka W, Majdan M. Kynurenic acid in synovial fluid and serum of patients with rheumatoid arthritis, spondyloarthropathy, and osteoarthritis. J Rheumatol. 2013; 40(6): 903–909.
  31. Parada-Turska J, Rzeski W, Zgrajka W, et al. Kynurenic acid, an endogenous constituent of rheumatoid arthritis synovial fluid, inhibits proliferation of synoviocytes in vitro. Rheumatol Int. 2006; 26(5): 422–426.
  32. Huang YS, Ogbechi J, Clanchy FI, et al. IDO and kynurenine metabolites in peripheral and CNS disorders. Front Immunol. 2020; 11: 388.
  33. Prendergast GC, Metz R, Muller AJ, et al. IDO2 in immunomodulation and autoimmune disease. Front Immunol. 2014; 5: 585.
  34. Alahdal M, Duan Li, Ouyang H, et al. The role of indoleamine 2,3 dioxygenase 1 in the osteoarthritis. Am J Transl Res. 2020; 12(6): 2322–2343.
  35. Brown JP. Long-term treatment of postmenopausal osteoporosis. Endocrinol Metab (Seoul). 2021; 36(3): 544–552.
  36. Forrest CM, Mackay GM, Oxford L, et al. Kynurenine pathway metabolism in patients with osteoporosis after 2 years of drug treatment. Clin Exp Pharmacol Physiol. 2006; 33(11): 1078–1087.
  37. Eisa NH, Reddy SV, Elmansi AM, et al. Kynurenine promotes RANKL-induced osteoclastogenesis in vitro by activating the aryl hydrocarbon receptor pathway. Int J Mol Sci. 2020; 21(21): 7931.
  38. Lorenzo J. The many ways of osteoclast activation. J Clin Invest. 2017; 127(7): 2530–2532.
  39. Wada T, Nakashima T, Hiroshi N, et al. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med. 2006; 12(1): 17–25.
  40. Michalowska M, Znorko B, Kaminski T, et al. New insights into tryptophan and its metabolites in the regulation of bone metabolism. J Physiol Pharmacol. 2015; 66(6): 779–791.
  41. Sieper J, Poddubnyy D. Axial spondyloarthritis. Lancet. 2017; 390(10089): 73–84.
  42. Huang T, Pu Y, Wang X, et al. Metabolomic analysis in spondyloarthritis: A systematic review. Front Microbiol. 2022; 13: 965709.
  43. Al Saedi A, Sharma S, Summers MA, et al. The multiple faces of tryptophan in bone biology. Exp Gerontol. 2020; 129: 110778.
  44. Klavdianou K, Liossis SN, Papachristou DJ, et al. Decreased serotonin levels and serotonin-mediated osteoblastic inhibitory signaling in patients with ankylosing spondylitis. J Bone Miner Res. 2016; 31(3): 630–639.
  45. Sornasse T, Li L, Zhao S, et al. Putative role of the histidine and tryptophan biochemical pathways in the mode of action of upadacitinib in patients with ankylosing spondylitis [abstract]. Arthritis Rheumatol. 2022; 74 (Suppl 9). https://acrabstracts.org/abstract/putative-role-of-the-histidine-and-tryptophan-biochemical-pathways-in-the-mode-of-action-of-upadacitinib-in-patients-with-ankylosing-spondylitis/ (3.11.2022).
  46. Hornyák L, Dobos N, Koncz G, et al. The role of indoleamine-2,3-dioxygenase in cancer development, diagnostics, and therapy. Front Immunol. 2018; 9: 151.