Tom 3, Nr 3 (2023)
Poglądy, stanowiska, zalecenia, standardy
Opublikowany online: 2023-10-20
Pobierz cytowanie

Farmakologiczne leczenie nefroprotekcyjne w niecukrzycowej przewlekłej chorobie nerek — stanowisko Polskiego Towarzystwa Nefrologicznego dotyczące praktyki klinicznej

Tomasz Stompór1, Marcin Adamczak2, Ilona Kurnatowska3, Beata Naumnik4, Michał Nowicki5, Leszek Tylicki6, Agata Winiarska1, Magdalena Krajewska7
Forum Nefrologiczne - Edukacja 2023;3(3):65-103.
Afiliacje
  1. Klinika Nefrologii, Hipertensjologii i Chorób Wewnętrznych, Uniwersytet Warmińsko-Mazurski w Olsztynie
  2. Klinika Nefrologii, Transplantologii i Chorób Wewnętrznych, Śląski Uniwersytet Medyczny, Katowice
  3. Klinika Chorób Wewnętrznych i Nefrologii Transplantacyjnej, Uniwersytet Medyczny w Łodzi
  4. I Klinika Nefrologii i Transplantologii z Ośrodkiem Dializ, Uniwersytet Medyczny w Białymstoku
  5. Klinika Nefrologii, Hipertensjologii i Transplantologii Nerek, Centralny Szpital Uniwersytecki, Uniwersytet Medyczny w Łodzi
  6. Klinika Nefrologii, Transplantologii i Chorób Wewnętrznych, Gdański Uniwersytet Medyczny
  7. Klinika Nefrologii i Medycyny Transplantacyjnej, Uniwersytet Medyczny we Wrocławiu

dostęp płatny

Tom 3, Nr 3 (2023)
POGLĄDY, STANOWISKA, ZALECENIA, STANDARDY I OPINIE
Opublikowany online: 2023-10-20

Streszczenie

Na całym świecie przewlekła choroba nerek (CKD, chronic kidney disease) ma charakter epidemii. Kamieniem milowym w leczeniu CKD było wprowadzenie inhibitorów układu renina–angiotensyna (RAS, renin–angiotensin system) (tj. ACEi lub ARB) nie tylko w charakterze leków obniżających ciśnienie tętnicze, lecz także działających nefroprotekcyjnie i posiadających potencjał redukcji białkomoczu. Przez dziesięciolecia leczenie to pozostawało jedyną udowodnioną strategią spowalniającą progresję przewlekłej choroby nerek. Sytuacja ta uległa zmianie kilka lat temu, przede wszystkim dzięki wprowadzeniu leków przeznaczonych do leczenia cukrzycy, które wykazały swoje działanie nefroprotekcyjne nie tylko w cukrzycowej chorobie nerek, ale także w CKD niezwiązanej z cukrzycą. Ponadto pojawiło się kilka leków precyzyjnie ukierunkowanych na mechanizmy patogenetyczne niektórych chorób nerek. Wykazano ponadto rolę kwasicy metabolicznej w progresji przewlekłej choroby nerek (a nie tylko jako następstwa CKD). W niniejszym artykule przeglądowym staramy się kompleksowo omówić wszystkie mające znaczenie terapie przyczyniające się do spowolnienia progresji niecukrzycowej choroby nerek, w tym leki obniżające ciśnienie tętnicze, poprzez nefroprotekcyjne działanie ACEi/ARB i spironolaktonu niezależne od obniżenia ciśnienia krwi, a także rolę inhibitorów kotransportera sodowo-glukozowego typu 2, leczenia kwasicy i strategie leczenia ukierunkowane na patomechanizm niektórych chorób. Pokrótce omawiamy także terapie mające spowalniać progresję CKD, dla których nie potwierdzono takiego działania. Jesteśmy przekonani, że opracowany przez nas szczegółowy przegląd zawierający praktyczne stanowisko dotyczące wielu aspektów leczenia pacjentów z niecukrzycową przewlekłą chorobą nerek, wypełni istniejącą lukę w dostępnej literaturze. Wierzymy, że może on stanowić pomoc dla lekarzy opiekujących się pacjentami z CKD w swojej praktyce klinicznej. Proponujemy również strategię postępowania, którą należy wdrożyć u większości pacjentów z niecukrzycową przewlekłą chorobą nerek, aby przeciwdziałać progresji choroby.

Streszczenie

Na całym świecie przewlekła choroba nerek (CKD, chronic kidney disease) ma charakter epidemii. Kamieniem milowym w leczeniu CKD było wprowadzenie inhibitorów układu renina–angiotensyna (RAS, renin–angiotensin system) (tj. ACEi lub ARB) nie tylko w charakterze leków obniżających ciśnienie tętnicze, lecz także działających nefroprotekcyjnie i posiadających potencjał redukcji białkomoczu. Przez dziesięciolecia leczenie to pozostawało jedyną udowodnioną strategią spowalniającą progresję przewlekłej choroby nerek. Sytuacja ta uległa zmianie kilka lat temu, przede wszystkim dzięki wprowadzeniu leków przeznaczonych do leczenia cukrzycy, które wykazały swoje działanie nefroprotekcyjne nie tylko w cukrzycowej chorobie nerek, ale także w CKD niezwiązanej z cukrzycą. Ponadto pojawiło się kilka leków precyzyjnie ukierunkowanych na mechanizmy patogenetyczne niektórych chorób nerek. Wykazano ponadto rolę kwasicy metabolicznej w progresji przewlekłej choroby nerek (a nie tylko jako następstwa CKD). W niniejszym artykule przeglądowym staramy się kompleksowo omówić wszystkie mające znaczenie terapie przyczyniające się do spowolnienia progresji niecukrzycowej choroby nerek, w tym leki obniżające ciśnienie tętnicze, poprzez nefroprotekcyjne działanie ACEi/ARB i spironolaktonu niezależne od obniżenia ciśnienia krwi, a także rolę inhibitorów kotransportera sodowo-glukozowego typu 2, leczenia kwasicy i strategie leczenia ukierunkowane na patomechanizm niektórych chorób. Pokrótce omawiamy także terapie mające spowalniać progresję CKD, dla których nie potwierdzono takiego działania. Jesteśmy przekonani, że opracowany przez nas szczegółowy przegląd zawierający praktyczne stanowisko dotyczące wielu aspektów leczenia pacjentów z niecukrzycową przewlekłą chorobą nerek, wypełni istniejącą lukę w dostępnej literaturze. Wierzymy, że może on stanowić pomoc dla lekarzy opiekujących się pacjentami z CKD w swojej praktyce klinicznej. Proponujemy również strategię postępowania, którą należy wdrożyć u większości pacjentów z niecukrzycową przewlekłą chorobą nerek, aby przeciwdziałać progresji choroby.

Pobierz cytowanie
Informacje o artykule
Tytuł

Farmakologiczne leczenie nefroprotekcyjne w niecukrzycowej przewlekłej chorobie nerek — stanowisko Polskiego Towarzystwa Nefrologicznego dotyczące praktyki klinicznej

Czasopismo

Forum Nefrologiczne - Edukacja

Numer

Tom 3, Nr 3 (2023)

Typ artykułu

Poglądy, stanowiska, zalecenia, standardy

Strony

65-103

Opublikowany online

2023-10-20

Wyświetlenia strony

827

Wyświetlenia/pobrania artykułu

163

Rekord bibliograficzny

Forum Nefrologiczne - Edukacja 2023;3(3):65-103.

Autorzy

Tomasz Stompór
Marcin Adamczak
Ilona Kurnatowska
Beata Naumnik
Michał Nowicki
Leszek Tylicki
Agata Winiarska
Magdalena Krajewska

Referencje (192)
  1. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. 2013, 3, 5–14.
  2. Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013; 382(9888): 260–272.
  3. Bikbov B, Purcell CA, Levey et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733.
  4. Anand S, Shivashankar R, Ali MK, et al. CARRS Investigators. Prevalence of chronic kidney disease in two major Indian cities and projections for associated cardiovascular disease. Kidney Int. 2015; 88(1): 178–185.
  5. Hill NR, Fatoba ST, Oke JL, et al. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One. 2016; 11(7): e0158765.
  6. Zhang L, Wang F, Wang Li, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012; 379(9818): 815–822.
  7. Gellert, R, Durlik M, Małgorzewicz S. Raport 2019. Ogólnopolskie Badanie Pacjentów Nefrologicznych. Forum Nefrol. 2020, 13, 149–163.
  8. Saran R, Robinson B, Abbott KC, et al. US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis. 2020; 75(1 Suppl 1): A6–A7.
  9. Chang A, Van Horn L, Jacobs DR, et al. Lifestyle-related factors, obesity, and incident microalbuminuria: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Am J Kidney Dis. 2013; 62(2): 267–275.
  10. Fox CS, Matsushita K, Woodward M, et al. Chronic Kidney Disease Prognosis Consortium. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet. 2012; 380(9854): 1662–1673.
  11. Stevens LA, Coresh J, Greene T, et al. Assessing kidney function--measured and estimated glomerular filtration rate. N Engl J Med. 2006; 354(23): 2473–2483.
  12. Keith DS, Nichols GA, Gullion CM, et al. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med. 2004; 164(6): 659–663.
  13. Carmena R, Ascaso JF, Redon J. Chronic kidney disease as a cardiovascular risk factor. J Hypertens. 2020; 38(11): 2110–2121.
  14. Wright JT, Williamson JD, Whelton PK, et al. SPRINT Research Group. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med. 2015; 373(22): 2103–2116.
  15. Cheung AK, Rahman M, Reboussin DM, et al. SPRINT Research Group. Effects of Intensive BP Control in CKD. J Am Soc Nephrol. 2017; 28(9): 2812–2823.
  16. Obi Y, Kalantar-Zadeh K, Shintani A, et al. Estimated glomerular filtration rate and the risk-benefit profile of intensive blood pressure control amongst nondiabetic patients: a post hoc analysis of a randomized clinical trial. J Intern Med. 2018; 283(3): 314–327.
  17. Agarwal R. Implications of Blood Pressure Measurement Technique for Implementation of Systolic Blood Pressure Intervention Trial (SPRINT). J Am Heart Assoc. 2017; 6(2).
  18. Dasgupta I, Zoccali C. Is the KDIGO Systolic Blood Pressure Target <120 mm Hg for Chronic Kidney Disease Appropriate in Routine Clinical Practice? Hypertension. 2022; 79(1): 4–11.
  19. Chen Z, Mo J, Xu J, et al. Effect of Low Diastolic Blood Pressure to Cardiovascular Risk in Patients With Ischemic Stroke or Transient Ischemic Attacks Under Different Systolic Blood Pressure Levels. Front Neurol. 2020; 11: 356.
  20. Franklin SS, Gokhale SS, Chow VH, et al. Does low diastolic blood pressure contribute to the risk of recurrent hypertensive cardiovascular disease events? The Framingham Heart Study. Hypertension. 2015; 65(2): 299–305.
  21. Flint AC, Conell C, Ren X, et al. Effect of Systolic and Diastolic Blood Pressure on Cardiovascular Outcomes. N Engl J Med. 2019; 381(3): 243–251.
  22. Bangalore S, Toklu B, Gianos E, et al. Optimal Systolic Blood Pressure Target After SPRINT: Insights from a Network Meta-Analysis of Randomized Trials. Am J Med. 2017; 130(6): 707–719.e8.
  23. Lv J, Ehteshami P, Sarnak MJ, et al. Effects of intensive blood pressure lowering on the progression of chronic kidney disease: a systematic review and meta-analysis. CMAJ. 2013; 185(11): 949–957.
  24. Ruggenenti P, Perna A, Loriga G, et al. REIN-2 Study Group. Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomised controlled trial. Lancet. 2005; 365(9463): 939–946.
  25. Ku E, McCulloch CE, Inker LA, et al. Intensive BP Control in Patients with CKD and Risk for Adverse Outcomes. J Am Soc Nephrol. 2023; 34(3): 385–393.
  26. Cianciaruso B, Bellizzi V, Minutolo R, et al. Renal adaptation to dietary sodium restriction in moderate renal failure resulting from chronic glomerular disease. J Am Soc Nephrol. 1996; 7(2): 306–313.
  27. Burnier M, Coltamai L, Maillard M, et al. Renal sodium handling and nighttime blood pressure. Semin Nephrol. 2007; 27(5): 565–571.
  28. Slagman MCJ, Waanders F, Hemmelder MH, et al. HOlland NEphrology STudy Group. Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial. BMJ. 2011; 343: d4366.
  29. McMahon EJ, Campbell KL, Bauer JD, et al. Altered dietary salt intake for people with chronic kidney disease. Cochrane Database Syst Rev. 2015(2): CD010070.
  30. Burnier M. Sodium intake and progression of chronic kidney disease-has the time finally come to do the impossible: a prospective randomized controlled trial? Nephrol Dial Transplant. 2021; 36(3): 381–384.
  31. Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2022, 102, S1–S127.
  32. Muntner P, Anderson A, Charleston J, et al. Chronic Renal Insufficiency Cohort (CRIC) Study Investigators. Hypertension awareness, treatment, and control in adults with CKD: results from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis. 2010; 55(3): 441–451.
  33. Giatras I, Lau J, Levey AS. Effect of angiotensin-converting enzyme inhibitors on the progression of nondiabetic renal disease: a meta-analysis of randomized trials. Angiotensin-Converting-Enzyme Inhibition and Progressive Renal Disease Study Group. Ann Intern Med. 1997; 127(5): 337–345.
  34. Maschio G, Alberti D, Janin G, et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med. 1996; 334(15): 939–945.
  35. Burnier M, Lin S, Ruilope L, et al. Effect of angiotensin receptor blockers on blood pressure and renal function in patients with concomitant hypertension and chronic kidney disease: a systematic review and meta-analysis. Blood Press. 2019; 28(6): 358–374.
  36. Mann JF, Gerstein HC, Pogue J, et al. Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann Intern Med. 2001; 134(8): 629–636.
  37. Tokmakova MP, Skali H, Kenchaiah S, et al. Chronic kidney disease, cardiovascular risk, and response to angiotensin-converting enzyme inhibition after myocardial infarction: the Survival And Ventricular Enlargement (SAVE) study. Circulation. 2004; 110(24): 3667–3673.
  38. Solomon SD, Rice MM, A Jablonski K, et al. Prevention of Events with ACE inhibition (PEACE) Investigators. Renal function and effectiveness of angiotensin-converting enzyme inhibitor therapy in patients with chronic stable coronary disease in the Prevention of Events with ACE inhibition (PEACE) trial. Circulation. 2006; 114(1): 26–31.
  39. Perkovic V, Ninomiya T, Arima H, et al. Chronic kidney disease, cardiovascular events, and the effects of perindopril-based blood pressure lowering: data from the PROGRESS study. J Am Soc Nephrol. 2007; 18(10): 2766–2772.
  40. Xie X, Liu Y, Perkovic V, et al. Renin-Angiotensin System Inhibitors and Kidney and Cardiovascular Outcomes in Patients With CKD: A Bayesian Network Meta-analysis of Randomized Clinical Trials. Am J Kidney Dis. 2016; 67(5): 728–741.
  41. Hou FF, Xie Di, Zhang X, et al. Renoprotection of Optimal Antiproteinuric Doses (ROAD) Study: a randomized controlled study of benazepril and losartan in chronic renal insufficiency. J Am Soc Nephrol. 2007; 18(6): 1889–1898.
  42. The Modification of Diet in Renal Disease Study: design, methods, and results from the feasibility study. Am J Kidney Dis. 1992; 20(1): 18–33.
  43. Kim H, Cho S, Lee H, et al. Korea hypertension fact sheet 2020: analysis of nationwide population-based data. Clinical Hypertension. 2021; 27(1).
  44. Wright Jr JT, Bakris G, Greene T et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: Results from the AASK trial. JAMA 2002, 288, 2421–2431.
  45. Williams B, Mancia G, Spiering W. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104.
  46. Zanchi A, Brunner H, Waeber B, et al. Renal haemodynamic and protective effects of calcium antagonists in hypertension. Journal of Hypertension. 1995; 13(12): 1363???1376.
  47. Bakris GL, Sarafidis PA, Weir MR, et al. ACCOMPLISH Trial investigators. Renal outcomes with different fixed-dose combination therapies in patients with hypertension at high risk for cardiovascular events (ACCOMPLISH): a prespecified secondary analysis of a randomised controlled trial. Lancet. 2010; 375(9721): 1173–1181.
  48. Jamerson K, Weber MA, Bakris GL, et al. ACCOMPLISH Trial Investigators. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med. 2008; 359(23): 2417–2428.
  49. Cho M, Choi CY, Choi YJ, et al. Clinical outcomes of renin angiotensin system inhibitor-based dual antihypertensive regimens in chronic kidney disease: a network meta-analysis. Sci Rep. 2023; 13(1): 5727.
  50. Beretta-Piccoli C, Weidmann P, De Châtel R, et al. Hypertension associated with early stage kidney disease. Complementary roles of circulating renin, the body sodium/volume state and duration of hypertension. Am J Med. 1976; 61(5): 739–747.
  51. Wilcox CS, Diuretics. In: Brenner BM, Rector FC. The Kidney. W. B. Saunders Co., Ltd.: Philadelphia, PA, USA, 1991; vol. 199, 2123–2148.
  52. Dussol B, Moussi-Frances J, Morange S, et al. A pilot study comparing furosemide and hydrochlorothiazide in patients with hypertension and stage 4 or 5 chronic kidney disease. J Clin Hypertens (Greenwich). 2012; 14(1): 32–37.
  53. Sinha AD, Agarwal R. Thiazides are useful agents in CKD. J Am Soc Hypertens. 2016; 10(4): 288–289.
  54. Agarwal R, Sinha AD, Cramer AE, et al. Chlorthalidone for Hypertension in Advanced Chronic Kidney Disease. N Engl J Med. 2021; 385(27): 2507–2519.
  55. Brater DC. Diuretic therapy. N Engl J Med. 1998; 339(6): 387–395.
  56. Ravioli S, Bahmad S, Funk GC, et al. Risk of Electrolyte Disorders, Syncope, and Falls in Patients Taking Thiazide Diuretics: Results of a Cross-Sectional Study. Am J Med. 2021; 134(9): 1148–1154.
  57. Palmer BF, Clegg DJ. Altered Prostaglandin Signaling as a Cause of Thiazide-Induced Hyponatremia. Am J Kidney Dis. 2018; 71(6): 769–771.
  58. Currie G, Taylor AHM, Fujita T, et al. Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol. 2016; 17(1): 127.
  59. Chung EYm, Ruospo M, Natale P, et al. Aldosterone antagonists in addition to renin angiotensin system antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev. 2020; 10(10): CD007004.
  60. Williams B, MacDonald TM, Morant S, et al. British Hypertension Society's PATHWAY Studies Group. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet. 2015; 386(10008): 2059–2068.
  61. Surma S, Adamczak M. Zaburzenia gospodarki potasowej u chorych z nadciśnieniem tętniczym. Choroby Serca i Naczyń. 2021; 18(1): 1–19.
  62. Bakris GL, Agarwal R, Anker SD, et al. on behalf of the FIDELIO-DKD study investigators, FIDELIO-DKD study investigators. Design and Baseline Characteristics of the Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease Trial. Am J Nephrol. 2019; 50(5): 333–344.
  63. Pitt B, Filippatos G, Agarwal R, et al. FIGARO-DKD Investigators. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N Engl J Med. 2021; 385(24): 2252–2263.
  64. Converse RL, Jacobsen TN, Toto RD, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992; 327(27): 1912–1918.
  65. Bangalore S, Messerli FH, Kostis JB, et al. Cardiovascular protection using beta-blockers: a critical review of the evidence. J Am Coll Cardiol. 2007; 50(7): 563–572.
  66. Bakris GL, Hart P, Ritz E. Beta blockers in the management of chronic kidney disease. Kidney Int. 2006; 70(11): 1905–1913.
  67. Yildiz A, Hursit M, Celik AV, et al. Doxazosin, but not amlodipine decreases insulin resistance in patients with chronic renal failure: a prospective, randomized-controlled study. Clin Nephrol. 2002; 58(6): 405–410.
  68. Erley CM, Haefele U, Heyne N, et al. Microalbuminuria in essential hypertension. Reduction by different antihypertensive drugs. Hypertension. 1993; 21(6 Pt 1): 810–815.
  69. Mori Y, Matsubara H, Nose A, et al. Safety and availability of doxazosin in treating hypertensive patients with chronic renal failure. Hypertens Res. 2001; 24(4): 359–363.
  70. Damianaki A, Polychronopoulou E, Wuerzner G, et al. New Aspects in the Management of Hypertension in Patients with Chronic Kidney Disease not on Renal Replacement Therapy. High Blood Press Cardiovasc Prev. 2022; 29(2): 125–135.
  71. Krieger E, Drager L, Giorgi D, et al. Spironolactone Versus Clonidine as a Fourth-Drug Therapy for Resistant Hypertension. Hypertension. 2018; 71(4): 681–690.
  72. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The Lancet. 1997; 349(9069): 1857–1863.
  73. Hou FF, Zhang X, Zhang GH, et al. Efficacy and safety of benazepril for advanced chronic renal insufficiency. N Engl J Med. 2006; 354(2): 131–140.
  74. Tylicki L, Rutkowski P, Renke M, et al. Renoprotective effect of small doses of losartan and enalapril in patients with primary glomerulonephritis. Short-term observation. Am J Nephrol. 2002; 22(4): 356–362.
  75. Cinotti GA, Zucchelli PC. Collaborative Study Group. Effect of Lisinopril on the progression of renal insufficiency in mild proteinuric non-diabetic nephropathies. Nephrol Dial Transplant. 2001; 16(5): 961–966.
  76. Gansevoort RT, de Zeeuw D, de Jong PE. Is the antiproteinuric effect of ACE inhibition mediated by interference in the renin-angiotensin system? Kidney Int. 1994; 45(3): 861–867.
  77. Sarafidis PA, Ruilope LM. Aggressive blood pressure reduction and renin-angiotensin system blockade in chronic kidney disease: time for re-evaluation? Kidney Int. 2014; 85(3): 536–546.
  78. Fogo AB. Regression lines in chronic kidney disease. J Am Soc Nephrol. 2003; 14(11): 2990–2991.
  79. Peters H, Border WA, Noble NA. Targeting TGF-beta overexpression in renal disease: maximizing the antifibrotic action of angiotensin II blockade. Kidney Int. 1998; 54(5): 1570–1580.
  80. Burgess E, Muirhead N, Rene de Cotret P, et al. SMART (Supra Maximal Atacand Renal Trial) Investigators. Supramaximal dose of candesartan in proteinuric renal disease. J Am Soc Nephrol. 2009; 20(4): 893–900.
  81. Aranda P, Segura J, Ruilope LM, et al. Long-term renoprotective effects of standard versus high doses of telmisartan in hypertensive nondiabetic nephropathies. Am J Kidney Dis. 2005; 46(6): 1074–1079.
  82. Borrelli S, Provenzano M, Gagliardi I, et al. Sodium Intake and Chronic Kidney Disease. Int J Mol Sci. 2020; 21(13).
  83. He J, Mills KT, Appel LJ, et al. Chronic Renal Insufficiency Cohort Study Investigators. Urinary Sodium and Potassium Excretion and CKD Progression. J Am Soc Nephrol. 2016; 27(4): 1202–1212.
  84. D'Elia L, Rossi G, Schiano di Cola M, et al. Meta-Analysis of the Effect of Dietary Sodium Restriction with or without Concomitant Renin-Angiotensin-Aldosterone System-Inhibiting Treatment on Albuminuria. Clin J Am Soc Nephrol. 2015; 10(9): 1542–1552.
  85. Stewen P, Mervaala E, Karppanen H, et al. Sodium load increases renal angiotensin type 1 receptors and decreases bradykinin type 2 receptors. Hypertens Res. 2003; 26(7): 583–589.
  86. Clase CM, Barzilay J, Gao P, et al. Acute change in glomerular filtration rate with inhibition of the renin-angiotensin system does not predict subsequent renal and cardiovascular outcomes. Kidney Int. 2017; 91(3): 683–690.
  87. Bandak G, Sang Y, Gasparini A, et al. Hyperkalemia After Initiating Renin-Angiotensin System Blockade: The Stockholm Creatinine Measurements (SCREAM) Project. J Am Heart Assoc. 2017, 6, e005428.
  88. Kidney Disease: Improving Global Outcomes (KDIGO) Blood Pressure Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021, 99, S1–S87.
  89. Clase CM, Carrero JJ, Ellison DH, et al. Conference Participants. Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2020; 97(1): 42–61.
  90. Mann JFE, Schmieder RE, Dyal L, et al. TRANSCEND (Telmisartan Randomised Assessment Study in ACE Intolerant Subjects with Cardiovascular Disease) Investigators. Effect of telmisartan on renal outcomes: a randomized trial. Ann Intern Med. 2009; 151(1): 1–10, W1.
  91. Strippoli GFM, Craig M, Schena FP, et al. Antihypertensive agents for primary prevention of diabetic nephropathy. J Am Soc Nephrol. 2005; 16(10): 3081–3091.
  92. Wolf G, Butzmann U, Wenzel UO. The renin-angiotensin system and progression of renal disease: from hemodynamics to cell biology. Nephron Physiol. 2003; 93(1): P3–13.
  93. Tylicki L, Lizakowski S, Rutkowski B. Renin-angiotensin-aldosterone system blockade for nephroprotection: current evidence and future directions. J Nephrol. 2012; 25(6): 900–910.
  94. Ahmed AK, Kamath NS, El Kossi M, et al. The impact of stopping inhibitors of the renin-angiotensin system in patients with advanced chronic kidney disease. Nephrol Dial Transplant. 2010; 25(12): 3977–3982.
  95. Qiao Y, Shin JI, Chen TK, et al. Association Between Renin-Angiotensin System Blockade Discontinuation and All-Cause Mortality Among Persons With Low Estimated Glomerular Filtration Rate. JAMA Intern Med. 2020; 180(5): 718–726.
  96. Fu EL, Evans M, Clase CM, et al. Stopping Renin-Angiotensin System Inhibitors in Patients with Advanced CKD and Risk of Adverse Outcomes: A Nationwide Study. J Am Soc Nephrol. 2021; 32(2): 424–435.
  97. Bhandari S, Mehta S, Khwaja A, et al. STOP ACEi Trial Investigators. Renin-Angiotensin System Inhibition in Advanced Chronic Kidney Disease. N Engl J Med. 2022; 387(22): 2021–2032.
  98. Laverman GD, Navis G, Henning RH, et al. Dual renin-angiotensin system blockade at optimal doses for proteinuria. Kidney Int. 2002; 62(3): 1020–1025.
  99. Russo D, Minutolo R, Pisani A, et al. Coadministration of losartan and enalapril exerts additive antiproteinuric effect in IgA nephropathy. Am J Kidney Dis. 2001; 38(1): 18–25.
  100. Mann JFE, Schmieder RE, McQueen M, et al. ONTARGET investigators. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet. 2008; 372(9638): 547–553.
  101. Epstein M, Kovesdy CP, Clase CM, et al. Aldosterone, Mineralocorticoid Receptor Activation, and CKD: A Review of Evolving Treatment Paradigms. Am J Kidney Dis. 2022; 80(5): 658–666.
  102. Tylicki L, Rutkowski P, Renke M, et al. Triple pharmacological blockade of the renin-angiotensin-aldosterone system in nondiabetic CKD: an open-label crossover randomized controlled trial. Am J Kidney Dis. 2008; 52(3): 486–493.
  103. Chrysostomou A, Pedagogos E, MacGregor L, et al. Double-blind, placebo-controlled study on the effect of the aldosterone receptor antagonist spironolactone in patients who have persistent proteinuria and are on long-term angiotensin-converting enzyme inhibitor therapy, with or without an angiotensin II receptor blocker. Clin J Am Soc Nephrol. 2006; 1(2): 256–262.
  104. Provenzano M, Puchades MJ, Garofalo C, et al. ROTATE-3 study group, ROTATE-3 study group members. Albuminuria-Lowering Effect of Dapagliflozin, Eplerenone, and Their Combination in Patients with Chronic Kidney Disease: A Randomized Crossover Clinical Trial. J Am Soc Nephrol. 2022; 33(8): 1569–1580.
  105. Agarwal R, Filippatos G, Pitt B, et al. FIDELIO-DKD and FIGARO-DKD investigators. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J. 2022; 43(6): 474–484.
  106. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. DAPA-CKD Trial Committees and Investigators. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020; 383(15): 1436–1446.
  107. Wheeler DC, Stefansson BV, Batiushin M, et al. The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics. Nephrol Dial Transplant. 2020; 35(10): 1700–1711.
  108. Perkovic V, Jardine MJ, Neal B, et al. CREDENCE Trial Investigators. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019; 380(24): 2295–2306.
  109. Chertow GM, Vart P, Jongs N, et al. DAPA-CKD Trial Committees and Investigators. Effects of Dapagliflozin in Stage 4 Chronic Kidney Disease. J Am Soc Nephrol. 2021; 32(9): 2352–2361.
  110. Herrington WG, Staplin N, Wanner C, et al. The EMPA-KIDNEY Collaborative Group. Empagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2023; 388(2): 117–127.
  111. Cherney D, Ferrannini E, Umpierrez G, et al. Efficacy and safety of sotagliflozin in patients with type 2 diabetes and severe renal impairment. Diabetes, Obesity and Metabolism. 2021; 23(12): 2632–2642.
  112. Baigent C, Landray MJ, Reith C. et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): A randomised placebo-controlled trial. Lancet 2011, 377, 2181–2192.
  113. Nuffield Department of Population Health Renal Studies Group; SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists’ Con- sortium. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: Collaborative meta-analysis of large placebo-controlled trials. Lancet 2022, 400, 1788–1801.
  114. Anker SD, Butler J, Filippatos G, et al. EMPEROR-Preserved Trial Investigators. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 2021; 385(16): 1451–1461.
  115. Packer M, Anker S, Butler J, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. New England Journal of Medicine. 2020; 383(15): 1413–1424.
  116. McMurray J, Solomon S, Inzucchi S, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. New England Journal of Medicine. 2019; 381(21): 1995–2008.
  117. Zannad F, Ferreira JP, Pocock SJ, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 2020; 396(10254): 819–829.
  118. Solomon S, McMurray J, Claggett B, et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. New England Journal of Medicine. 2022; 387(12): 1089–1098.
  119. Heerspink HJL, Sjöström CD, Jongs N. et al. Effects of dapagliflozin on mortality in patients with chronic kidney disease: A pre-specified analysis from the DAPA-CKD randomized controlled trial. Eur. Heart J. 2021, 42, 1216–1227.
  120. Zannad F, Ferreira JP, Pocock SJ, et al. Cardiac and Kidney Benefits of Empagliflozin in Heart Failure Across the Spectrum of Kidney Function: Insights From EMPEROR-Reduced. Circulation. 2021; 143(4): 310–321.
  121. Waijer SW, Vart P, Cherney DZI, et al. Effect of dapagliflozin on kidney and cardiovascular outcomes by baseline KDIGO risk categories: a post hoc analysis of the DAPA-CKD trial. Diabetologia. 2022; 65(7): 1085–1097.
  122. Lim JH, Kwon S, Jeon Y, et al. The Efficacy and Safety of SGLT2 Inhibitor in Diabetic Kidney Transplant Recipients. Transplantation. 2022; 106(9): e404–e412.
  123. Lin Y, Mok M, Harrison J, et al. Use of sodium-glucose co-transporter 2 inhibitors in solid organ transplant recipients with pre-existing type 2 or post-transplantation diabetes mellitus: A systematic review. Transplant Rev (Orlando). 2023; 37(1): 100729.
  124. Wheeler DC, Toto RD, Stefánsson BV, et al. DAPA-CKD Trial Committees and Investigators. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 2021; 100(1): 215–224.
  125. Wheeler DC, Jongs N, Stefansson BV, et al. DAPA-CKD Trial Committees and Investigators. Safety and efficacy of dapagliflozin in patients with focal segmental glomerulosclerosis: a prespecified analysis of the dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial. Nephrol Dial Transplant. 2022; 37(9): 1647–1656.
  126. Heerspink HJL, Cherney DZI. Clinical Implications of an Acute Dip in eGFR after SGLT2 Inhibitor Initiation. Clin J Am Soc Nephrol. 2021; 16(8): 1278–1280.
  127. Jongs N, Chertow GM, Greene T, et al. DAPA-CKD Trial Committees and Investigators, Members of the DAPA-CKD Trial Committees and Investigators. Correlates and Consequences of an Acute Change in eGFR in Response to the SGLT2 Inhibitor Dapagliflozin in Patients with CKD. J Am Soc Nephrol. 2022; 33(11): 2094–2107.
  128. Neuen BL, Oshima M, Agarwal R, et al. Sodium-Glucose Cotransporter 2 Inhibitors and Risk of Hyperkalemia in People With Type 2 Diabetes: A Meta-Analysis of Individual Participant Data From Randomized, Controlled Trials. Circulation. 2022; 145(19): 1460–1470.
  129. Raphael KL, Zhang Y, Ying J, et al. Prevalence of and risk factors for reduced serum bicarbonate in chronic kidney disease. Nephrology (Carlton). 2014; 19(10): 648–654.
  130. Skiba K, Gojowy D, Szotowska M et al. Metabolic acidosis in kidney transplant recipients. Pol. Arch. Intern. Med. 2018, 128, 587–593.
  131. Inker LA, Coresh J, Levey AS, et al. Estimated GFR, albuminuria, and complications of chronic kidney disease. J Am Soc Nephrol. 2011; 22(12): 2322–2331.
  132. Kuczera P, Ciaston-Mogilska D, Oslizlo B, et al. The Prevalence of Metabolic Acidosis in Patients with Different Stages of Chronic Kidney Disease: Single-Centre Study. Kidney Blood Press Res. 2020; 45(6): 863–872.
  133. Cook EE, Davis J, Israni R, et al. Prevalence of Metabolic Acidosis Among Patients with Chronic Kidney Disease and Hyperkalemia. Adv Ther. 2021; 38(10): 5238–5252.
  134. Vincent-Johnson A, Scialla JJ. Importance of Metabolic Acidosis as a Health Risk in Chronic Kidney Disease. Adv Chronic Kidney Dis. 2022; 29(4): 329–336.
  135. Adamczak M, Surma S,Metabolic Acidosis in Patients with CKD: Epidemiology, Pathogenesis, and Treatment. Kidney Dis., 7, 452–467.
  136. Dobre M, Yang W, Chen J, et al. CRIC Investigators. Association of serum bicarbonate with risk of renal and cardiovascular outcomes in CKD: a report from the Chronic Renal Insufficiency Cohort (CRIC) study. Am J Kidney Dis. 2013; 62(4): 670–678.
  137. Raphael KL, Zhang Y, Wei G, et al. Serum bicarbonate and mortality in adults in NHANES III. Nephrol Dial Transplant. 2013; 28(5): 1207–1213.
  138. Raphael KL. Metabolic Acidosis in CKD: Core Curriculum 2019. Am J Kidney Dis. 2019; 74(2): 263–275.
  139. de Brito-Ashurst I, Varagunam M, Raftery MJ, et al. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol. 2009; 20(9): 2075–2084.
  140. Di Iorio BR, Bellasi A, Raphael KL, et al. UBI Study Group. Treatment of metabolic acidosis with sodium bicarbonate delays progression of chronic kidney disease: the UBI Study. J Nephrol. 2019; 32(6): 989–1001.
  141. Hultin S, Hood C, Campbell KL, et al. A Systematic Review and Meta-Analysis on Effects of Bicarbonate Therapy on Kidney Outcomes. Kidney Int Rep. 2021; 6(3): 695–705.
  142. Luft FC, Zemel MB, Sowers JA, et al. Sodium bicarbonate and sodium chloride: effects on blood pressure and electrolyte homeostasis in normal and hypertensive man. J Hypertens. 1990; 8(7): 663–670.
  143. Husted FC, Nolph KD, Maher JF. NaHCO3 and NaC1 tolerance in chronic renal failure. J Clin Invest. 1975; 56(2): 414–419.
  144. Mathur VS, Bushinsky DA, Inker L, et al. Design and population of the VALOR-CKD study: a multicenter, randomized, double-blind, placebo-controlled trial evaluating the efficacy and safety of veverimer in slowing progression of chronic kidney disease in patients with metabolic acidosis. Nephrol Dial Transplant. 2023; 38(6): 1448–1458.
  145. Sebastian A, Frassetto LA, Sellmeyer DE, et al. Estimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their hominid ancestors. Am J Clin Nutr. 2002; 76(6): 1308–1316.
  146. Scialla JJ, Anderson CAM. Dietary acid load: a novel nutritional target in chronic kidney disease? Adv Chronic Kidney Dis. 2013; 20(2): 141–149.
  147. Goraya N, Simoni J, Jo C, et al. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int. 2012; 81(1): 86–93.
  148. Goraya N, Simoni J, Jo CH, et al. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int. 2014; 86(5): 1031–1038.
  149. Goraya N, Simoni J, Jo CH, et al. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin J Am Soc Nephrol. 2013; 8(3): 371–381.
  150. Cramer MT, Guay-Woodford LM. Cystic kidney disease: a primer. Adv Chronic Kidney Dis. 2015; 22(4): 297–305.
  151. Radhakrishnan Y, Duriseti P, Chebib FT. Management of autosomal dominant polycystic kidney disease in the era of disease-modifying treatment options. Kidney Res Clin Pract. 2022; 41(4): 422–431.
  152. Müller RU, Messchendorp AL, Birn H, et al. An update on the use of tolvaptan for autosomal dominant polycystic kidney disease: Consensus statement on behalf of the ERA Working Group on Inherited Kidney Disorders, the European Rare Kidney Disease Reference Network and Polycystic Kidney Disease International. Nephrol. Dial. Transplant. 2022, 37, 825–839.
  153. Raina R, Houry A, Rath P, et al. Clinical Utility and Tolerability of Tolvaptan in the Treatment of Autosomal Dominant Polycystic Kidney Disease (ADPKD). Drug Healthc Patient Saf. 2022; 14: 147–159.
  154. Blair HA. Tolvaptan: A Review in Autosomal Dominant Polycystic Kidney Disease. Drugs. 2019; 79(3): 303–313.
  155. Liebau MC, Mekahli D, Perrone R, et al. Polycystic Kidney Disease Drug Development: A Conference Report. Kidney Med. 2023; 5(3): 100596.
  156. Afsar B, Afsar RE, Demiray A, et al. Sodium-glucose cotransporter inhibition in polycystic kidney disease: fact or fiction. Clin Kidney J. 2022; 15(7): 1275–1283.
  157. Zarate YA, Hopkin RJ. Fabry's disease. Lancet. 2008; 372(9647): 1427–1435.
  158. Li Xi, Ren X, Zhang Y, et al. Fabry disease: Mechanism and therapeutics strategies. Front Pharmacol. 2022; 13: 1025740.
  159. Nowicki M, Bazan-Socha S, Błażejewska-Hyzorek B, et al. Enzyme replacement therapy in Fabry disease in Poland: a position statement. Pol Arch Intern Med. 2020; 130(1): 91–97.
  160. McCafferty EH, Scott LJ. Migalastat: A Review in Fabry Disease. Drugs. 2019; 79(5): 543–554.
  161. Palaiodimou L, Kokotis P, Zompola C, et al. Fabry Disease: Current and Novel Therapeutic Strategies. A Narrative Review. Curr Neuropharmacol. 2023; 21(3): 440–456.
  162. Wanner C, Ortiz A, Wilcox WR, et al. Global reach of over 20 years of experience in the patient-centered Fabry Registry: Advancement of Fabry disease expertise and dissemination of real-world evidence to the Fabry community. Mol Genet Metab. 2023; 139(3): 107603.
  163. Cybulla M, Nicholls K, Feriozzi S, et al. FOS Study Group. Renoprotective Effect of Agalsidase Alfa: A Long-Term Follow-Up of Patients with Fabry Disease. J Clin Med. 2022; 11(16).
  164. Perretta F, Jaurretche S. Fabry Disease: Switch from Enzyme Replacement Therapy to Oral Chaperone Migalastat: What Do We Know Today? Healthcare (Basel). 2023; 11(4).
  165. Germain DP, Altarescu G, Barriales-Villa R, et al. An expert consensus on practical clinical recommendations and guidance for patients with classic Fabry disease. Mol Genet Metab. 2022; 137(1-2): 49–61.
  166. Shaikh, H.; Hashmi, M.F.; Aeddula, N.R. Anemia of Chronic Renal Disease. 20 November 2022. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. https://www.ncbi.nlm.nih.gov/books/NBK539871/ (19 February 2023).
  167. Matsushita K, Ballew SH, Wang AYM, et al. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nat Rev Nephrol. 2022; 18(11): 696–707.
  168. Yan MT, Chao CT, Lin SH. Chronic Kidney Disease: Strategies to Retard Progression. Int J Mol Sci. 2021; 22(18).
  169. Drüeke TB, Locatelli F, Clyne N, et al. CREATE Investigators. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med. 2006; 355(20): 2071–2084.
  170. Elliott S, Tomita D, Endre Z. Erythropoiesis stimulating agents and reno-protection: a meta-analysis. BMC Nephrol. 2017; 18(1): 14.
  171. Hirota, K. HIF-α Prolyl Hydroxylase Inhibitors and Their Implications for Biomedicine: A Comprehensive Review. Biomedicines. 2021 9, 468.
  172. Macdougall IC. Hypoxia-inducible factor prolyl hydroxylase enzyme inhibitors: ready for primetime? Curr Opin Nephrol Hypertens. 2022; 31(5): 399–405.
  173. Mima A. Hypoxia-inducible factor-prolyl hydroxylase inhibitors for renal anemia in chronic kidney disease: Advantages and disadvantages. Eur J Pharmacol. 2021; 912: 174583.
  174. Yang H, Wu Y, Cheng M, et al. Roxadustat (FG-4592) protects against ischaemia-induced acute kidney injury via improving CD73 and decreasing AIM2 inflammasome activation. Nephrol Dial Transplant. 2023; 38(4): 858–875.
  175. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2017, 7, 1–59.
  176. Hu L, Napoletano A, Provenzano M, et al. Mineral Bone Disorders in Kidney Disease Patients: The Ever-Current Topic. Int J Mol Sci. 2022; 23(20).
  177. Brandenburg V, Ketteler M. Vitamin D and Secondary Hyperparathyroidism in Chronic Kidney Disease: A Critical Appraisal of the Past, Present, and the Future. Nutrients. 2022; 14(15).
  178. van Ballegooijen AJ, Reinders I, Visser M, et al. Parathyroid hormone and cardiovascular disease events: A systematic review and meta-analysis of prospective studies. Am Heart J. 2013; 165(5): 655–64, 664.e1.
  179. Evenepoel P, Bover J, Ureña Torres P. Parathyroid hormone metabolism and signaling in health and chronic kidney disease. Kidney Int. 2016; 90(6): 1184–1190.
  180. Abbas F, Coyne DW. Limited usefulness of calcimimetics for secondary hyperparathyroidism in non-dialysis chronic kidney disease. Kidney Res Clin Pract. 2019; 38(2): 141–144.
  181. Dusso AS, Bauerle KT, Bernal-Mizrachi C. Non-classical Vitamin D Actions for Renal Protection. Front Med (Lausanne). 2021; 8: 790513.
  182. Kandula P, Dobre M, Schold JD, et al. Vitamin D supplementation in chronic kidney disease: a systematic review and meta-analysis of observational studies and randomized controlled trials. Clin J Am Soc Nephrol. 2011; 6(1): 50–62.
  183. Cheng S, Coyne D. Oral paricalcitol for the treatment of secondary hyperparathyroidism in chronic kidney disease. Ther Clin Risk Manag. 2006; 2(3): 297–301.
  184. Coyne D, Acharya M, Qiu P, et al. Paricalcitol capsule for the treatment of secondary hyperparathyroidism in stages 3 and 4 CKD. Am J Kidney Dis. 2006; 47(2): 263–276.
  185. Hu X, Shang J, Yuan W, et al. Effects of paricalcitol on cardiovascular outcomes and renal function in patients with chronic kidney disease : A meta-analysis. Herz. 2018; 43(6): 518–528.
  186. Pergola PE. Phosphate Frustration: Treatment Options to Complement Current Therapies. Int J Nephrol. 2022; 2022: 9457440.
  187. Block GA, Wheeler DC, Persky MS, et al. Effects of phosphate binders in moderate CKD. J Am Soc Nephrol. 2012; 23(8): 1407–1415.
  188. Daenen K, Andries A, Mekahli D, et al. Oxidative stress in chronic kidney disease. Pediatr Nephrol. 2019; 34(6): 975–991.
  189. Tamay-Cach F, Quintana-Pérez JC, Trujillo-Ferrara JG, et al. A review of the impact of oxidative stress and some antioxidant therapies on renal damage. Ren Fail. 2016; 38(2): 171–175.
  190. Casanova AG, López-Hernández FJ, Vicente-Vicente L, et al. Are Antioxidants Useful in Preventing the Progression of Chronic Kidney Disease? Antioxidants (Basel). 2021; 10(11).
  191. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726.
  192. Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2022; 65(12): 1925–1966.

Regulamin

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

Wydawcą serwisu jest  VM Media Group sp. z o.o, Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl