Tom 3, Nr 3 (2023)
Praca poglądowa
Opublikowany online: 2023-10-20
Wyświetlenia strony 349
Wyświetlenia/pobrania artykułu 90
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Leki moczopędne — omówienie aktualnego stanu wiedzy

Stanisław Surma1, Andrzej Więcek1, Marcin Adamczak1
Forum Nefrologiczne - Edukacja 2023;3(3):121-134.

Streszczenie

Lekami moczopędnymi określa się leki zwiększające wydalanie sodu i wody z moczem. Leki moczopędne zmniejszają reabsorpcję sodu w obrębie cewki bliższej (inhibitory SGLT2, inhibitory anhydrazy węglanowej), pętli Henlego (pętlowe leki moczopędne), cewki dalszej (tiazydowe i tiazydopodobne leki moczopędne) oraz cewki zbiorczej (antagoniści receptorów mineralokortykoidowych). Zróżnicowany mechanizm działania leków moczopędnych umożliwia ich łączne stosowanie. Poszczególne grupy leków moczopędnych znalazły zastosowanie w leczeniu licznych stanów klinicznych dotyczących m.in. chorób nerek, niewydolności serca  i nadciśnienia tętniczego. Inhibitory SGLT2 charakteryzują się działaniem przeciwnadciśnieniowym oraz kardio- i nefroprotekcyjnym, a także pozbawione są niekorzystnego wpływu na natremię i kaliemię. Acetazolamid znalazł zastosowanie w leczeniu ostrej niewydolności krążenia. Pętlowe leki moczopędne charakteryzują się działaniem przeciwnadciśnieniowym i zmniejszają przewodnienie organizmu. Leki te niezbyt często powodują zaburzenia elektrolitowe. Tiazydowe i tiazydopodobne leki moczopędne wykazują działanie przeciwnadciśnieniowe. Do istotnych klinicznie możliwych powikłań stosowania tych leków zalicza się hiponatremię i hipokaliemię. Antagoniści receptorów mineralokortykoidowych charakteryzują się działaniem przeciwnadciśnieniowym, nefroprotekcyjnym oraz kardioprotekcyjnym. Leki te zwiększają ryzyko wystąpienia hiperkaliemii.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Surma S, Więcek A, Adamczak M. Zaburzenia gospodarki sodowej u chorych z nadciśnieniem tętniczym. Choroby Serca i Naczyń. 2022; 19(1): 19–38.
  2. Surma S, Filipiak KJ. Plejotropowe działanie inhibitorów SGLT2. In: Więcek A. ed. Postępy w Nefrologii i Nadciśnieniu Tętniczym T. XXI. 2022 : 47–61.
  3. Filippatos TD, Tsimihodimos V, Elisaf MS. Mechanisms of blood pressure reduction with sodium-glucose co-transporter 2 (SGLT2) inhibitors. Expert Opin Pharmacother. 2016; 17(12): 1581–1583.
  4. Scheen AJ. Effects of reducing blood pressure on cardiovascular outcomes and mortality in patients with type 2 diabetes: Focus on SGLT2 inhibitors and EMPA-REG OUTCOME. Diabetes Res Clin Pract. 2016; 121: 204–214.
  5. Bjornstad P, Greasley PJ, Wheeler DC, et al. The Potential Roles of Osmotic and Nonosmotic Sodium Handling in Mediating the Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Heart Failure. J Card Fail. 2021; 27(12): 1447–1455.
  6. Dekkers CCJ, Gansevoort RT, Heerspink HJL. New Diabetes Therapies and Diabetic Kidney Disease Progression: the Role of SGLT-2 Inhibitors. Curr Diab Rep. 2018; 18(5): 27.
  7. Kawasoe S, Maruguchi Y, Kajiya S, et al. Mechanism of the blood pressure-lowering effect of sodium-glucose cotransporter 2 inhibitors in obese patients with type 2 diabetes. BMC Pharmacol Toxicol. 2017; 18(1): 23.
  8. Fukuoka S, Dohi K, Takeuchi T, et al. Diuretic effects of sodium-glucose cotransporter 2 inhibitor in patients with type 2 diabetes mellitus and heart failure. Int J Cardiol. 2015; 201(9): 1–3.
  9. Griffin M, Rao VS, Ivey-Miranda J, et al. Empagliflozin in Heart Failure: Diuretic and Cardiorenal Effects. Circulation. 2020; 142(11): 1028–1039.
  10. Szekeres Z, Toth K, Szabados E. The Effects of SGLT2 Inhibitors on Lipid Metabolism. Metabolites. 2021; 11(2).
  11. Ohara K, Masuda T, Murakami T, et al. Effects of the sodium-glucose cotransporter 2 inhibitor dapagliflozin on fluid distribution: A comparison study with furosemide and tolvaptan. Nephrology (Carlton). 2019; 24(9): 904–911.
  12. Karg MV, Bosch A, Kannenkeril D, et al. SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: a randomised controlled trial. Cardiovasc Diabetol. 2018; 17(1): 5.
  13. Noble MIM, Drake-Holland AJ, Vink H. Hypothesis: arterial glycocalyx dysfunction is the first step in the atherothrombotic process. QJM. 2008; 101(7): 513–518.
  14. Fels J, Jeggle P, Liashkovich I, et al. Nanomechanics of vascular endothelium. Cell Tissue Res. 2014; 355(3): 727–737.
  15. Oberleithner H, Peters W, Kusche-Vihrog K, et al. Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Arch. 2011; 462(4): 519–528.
  16. Surma S, Romańczyk M, Bańkowski E. The role of limiting sodium intake in the diet — from theory to practice. Folia Cardiologica. 2020.
  17. Sugiyama S, Jinnouchi H, Kurinami N, et al. The SGLT2 Inhibitor Dapagliflozin Significantly Improves the Peripheral Microvascular Endothelial Function in Patients with Uncontrolled Type 2 Diabetes Mellitus. Intern Med. 2018; 57(15): 2147–2156.
  18. Shigiyama F, Kumashiro N, Miyagi M, et al. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovasc Diabetol. 2017; 16(1): 84.
  19. Ren B, Chen M. Effect of sodium-glucose cotransporter-2 inhibitors on patients with essential hypertension and pre-hypertension: a meta-analysis. Ther Adv Endocrinol Metab. 2022; 13: 20420188221142450.
  20. Bjornstad P, Greasley PJ, Wheeler DC, et al. The Potential Roles of Osmotic and Nonosmotic Sodium Handling in Mediating the Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Heart Failure. J Card Fail. 2021; 27(12): 1447–1455.
  21. Baigent C, Emberson J, Haynes R, et al. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. The Lancet. 2022; 400(10365): 1788–1801.
  22. McMurray JJV, Wheeler DC, Stefánsson BV, et al. DAPA-CKD Trial Committees and Investigators, DAPA-CKD Trial Committees and Investigators. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020; 383(15): 1436–1446.
  23. Herrington WG, Staplin N, Wanner C, et al. The EMPA-KIDNEY Collaborative Group. Empagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2023; 388(2): 117–127.
  24. Meraz-Muñoz AY, Weinstein J, Wald R. eGFR Decline after SGLT2 Inhibitor Initiation: The Tortoise and the Hare Reimagined. Kidney360. 2021; 2(6): 1042–1047.
  25. Jongs N, Greene T, Chertow GM, et al. DAPA-CKD Trial Committees and Investigators. Effect of dapagliflozin on urinary albumin excretion in patients with chronic kidney disease with and without type 2 diabetes: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021; 9(11): 755–766.
  26. Kohn OF, Wheeler DC, Stefánsson BV, et al. DAPA-CKD Trial Committees and Investigators. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021; 9(1): 22–31.
  27. Gonzalez DE, Foresto RD, Ribeiro AB. SGLT-2 inhibitors in diabetes: a focus on renoprotection. Rev Assoc Med Bras (1992). 2020; 66Suppl 1(Suppl 1): s17–s24.
  28. Kidokoro K, Cherney DZI, Bozovic A, et al. Evaluation of Glomerular Hemodynamic Function by Empagliflozin in Diabetic Mice Using In Vivo Imaging. Circulation. 2019; 140(4): 303–315.
  29. Cherney DZI, Perkins BA, Soleymanlou N, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014; 129(5): 587–597.
  30. Bommel Ev, Muskiet M, Baar Mv, et al. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney International. 2020; 97(1): 202–212.
  31. Kim NH, Kim NH. Renoprotective Mechanism of Sodium-Glucose Cotransporter 2 Inhibitors: Focusing on Renal Hemodynamics. Diabetes Metab J. 2022; 46(4): 543–551.
  32. Tiwary M, Milder TY, Stocker SL, et al. Sodium-glucose co-transporter 2 inhibitor therapy: use in chronic kidney disease and adjunctive sodium restriction. Intern Med J. 2022; 52(10): 1666–1676.
  33. Jongs N, Chertow GM, Greene T, et al. DAPA-CKD Trial Committees and Investigators, Members of the DAPA-CKD Trial Committees and Investigators. Correlates and Consequences of an Acute Change in eGFR in Response to the SGLT2 Inhibitor Dapagliflozin in Patients with CKD. J Am Soc Nephrol. 2022; 33(11): 2094–2107.
  34. Adamczak M, Surma S, Więcek A. Hyponatremia in patients with arterial hypertension –pathophysiology and management. Archives of Medical Science. 2023.
  35. https://jdc.jefferson.edu/cgi/viewcontent.cgi?article=1071&context=si_ctr_2023_phase1 (30/3/2023).
  36. Yavin Y, Mansfield TA, Ptaszynska A, et al. Effect of the SGLT2 Inhibitor Dapagliflozin on Potassium Levels in Patients with Type 2 Diabetes Mellitus: A Pooled Analysis. Diabetes Ther. 2016; 7(1): 125–137.
  37. Neuen BL, Oshima M, Agarwal R, et al. Sodium-Glucose Cotransporter 2 Inhibitors and Risk of Hyperkalemia in People With Type 2 Diabetes: A Meta-Analysis of Individual Participant Data From Randomized, Controlled Trials. Circulation. 2022; 145(19): 1460–1470.
  38. Neuen BL, Oshima M, Perkovic V, et al. Effects of canagliflozin on serum potassium in people with diabetes and chronic kidney disease: the CREDENCE trial. Eur Heart J. 2021; 42(48): 4891–4901.
  39. Ferreira J, Butler J, Zannad F, et al. Mineralocorticoid Receptor Antagonists and Empagliflozin in Patients With Heart Failure and Preserved Ejection Fraction. Journal of the American College of Cardiology. 2022; 79(12): 1129–1137.
  40. Adamczak M, Surma S, Więcek A. Kwasica metaboliczna u chorych z przewlekłą chorobą nerek. Forum Nefrol. 2020; 13(4): 214–227.
  41. https://indeks.mp.pl/desc.php?id=44.
  42. Mullens W, Dauw J, Martens P, et al. Acetazolamide in Acute Decompensated Heart Failure with Volume Overload. New England Journal of Medicine. 2022; 387(13): 1185–1195.
  43. Schmickl CN, Owens RL, Orr JE, et al. Side effects of acetazolamide: a systematic review and meta-analysis assessing overall risk and dose dependence. BMJ Open Respir Res. 2020; 7(1).
  44. Surma S, Więcek A, Adamczak M. Hipokaliemia u chorych z nadciśnieniem tętniczym. Terapia. 2020; 10(393): 4–17.
  45. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021; 42(36): 3599–3726.
  46. Mancia Chairperson G, Kreutz Co-Chair R, Brunström M, et al. Authors/Task Force Members:. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension Endorsed by the European Renal Association (ERA) and the International Society of Hypertension (ISH). J Hypertens. 2023 [Epub ahead of print].
  47. Tykarski A, Filipiak KJ, Januszewicz A, et al. Zasady postępowania w nadciśnieniu tętniczym — 2019 rok. Nadciśnienie Tętnicze w Praktyce. 2019; 5(1): 1–86.
  48. Palmer BF, Clegg DJ. Fluid overload as a therapeutic target for the preservative management of chronic kidney disease. Curr Opin Nephrol Hypertens. 2020; 29(1): 22–28.
  49. Tabinor M, Elphick E, Dudson M, et al. Bioimpedance-defined overhydration predicts survival in end stage kidney failure (ESKF): systematic review and subgroup meta-analysis. Sci Rep. 2018; 8(1): 4441.
  50. Esmeray K, Dizdar OS, Erdem S, et al. Effect of Strict Volume Control on Renal Progression and Mortality in Non-Dialysis-Dependent Chronic Kidney Disease Patients: A Prospective Interventional Study. Med Princ Pract. 2018; 27(5): 420–427.
  51. Musini VM, Rezapour P, Wright JM, et al. Blood pressure lowering efficacy of loop diuretics for primary hypertension. Cochrane Database Syst Rev. 2012; 2015(8): CD003825.
  52. Zamboli P, De Nicola L, Minutolo R, et al. Effect of furosemide on left ventricular mass in non-dialysis chronic kidney disease patients: a randomized controlled trial. Nephrol Dial Transplant. 2011; 26(5): 1575–1583.
  53. Mannheimer B, Falhammar H, Calissendorff J, et al. Non-thiazide diuretics and hospitalization due to hyponatraemia: A population-based case-control study. Clin Endocrinol (Oxf). 2021; 95(3): 520–526.
  54. Adamczak M, Chudek J, Zejda J, et al. Prevalence of hypokalemia in older persons: results from the PolSenior national survey. Eur Geriatr Med. 2021; 12(5): 981–987.
  55. Guo L, Fu B, Liu Y, et al. Diuretic resistance in patients with kidney disease: Challenges and opportunities. Biomed Pharmacother. 2023; 157: 114058.
  56. Schork A, Woern M, Kalbacher H, et al. Association of Plasminuria with Overhydration in Patients with CKD. Clin J Am Soc Nephrol. 2016; 11(5): 761–769.
  57. Svenningsen P, Friis UG, Versland JB, et al. Mechanisms of renal NaCl retention in proteinuric disease. Acta Physiol (Oxf). 2013; 207(3): 536–545.
  58. Wilcox CS, Testani JM, Pitt B. Pathophysiology of Diuretic Resistance and Its Implications for the Management of Chronic Heart Failure. Hypertension. 2020; 76(4): 1045–1054.
  59. Soleimani M. The multiple roles of pendrin in the kidney. Nephrol Dial Transplant. 2015; 30(8): 1257–1266.
  60. Hoorn EJ, Ellison DH. Diuretic Resistance. Am J Kidney Dis. 2017; 69(1): 136–142.
  61. Ernst ME, Moser M. Use of diuretics in patients with hypertension. N Engl J Med. 2009; 361(22): 2153–2164.
  62. Surma S, Adamczak M, Więcek A. Hiponatremia spowodowana tiazydowymi i tiazydopodobnymi lekami moczopędnymi. Terapia. 2019; 10(381): 4–10.
  63. Musini VM, Nazer M, Bassett K, et al. Blood pressure-lowering efficacy of monotherapy with thiazide diuretics for primary hypertension. Cochrane Database Syst Rev. 2014(5): CD003824.
  64. Liang W, Ma H, Cao L, et al. Comparison of thiazide-like diuretics versus thiazide-type diuretics: a meta-analysis. J Cell Mol Med. 2017; 21(11): 2634–2642.
  65. Surma S, Więcek A, Adamczak M. Leczenie nadciśnienia tętniczego u chorych z przewlekłą chorobą nerek. Terapia. 2022; 7(414): 66–76.
  66. Agarwal R, Sinha A, Cramer A, et al. Chlorthalidone for Hypertension in Advanced Chronic Kidney Disease. New England Journal of Medicine. 2021; 385(27): 2507–2519.
  67. Teles F, Peçanha de Miranda Coelho JA, Albino RM, et al. Effectiveness of thiazide and thiazide-like diuretics in advanced chronic kidney disease: a systematic review and meta-analysis. Ren Fail. 2023; 45(1): 2163903.
  68. Kramers BJ, Koorevaar IW, De Boer R, et al. DIPAK Consortium. Thiazide diuretics and the rate of disease progression in autosomal dominant polycystic kidney disease: an observational study. Nephrol Dial Transplant. 2021; 36(10): 1828–1836.
  69. Clayton JA, Rodgers S, Blakey J, et al. Thiazide diuretic prescription and electrolyte abnormalities in primary care. Br J Clin Pharmacol. 2006; 61(1): 87–95.
  70. Palmer BF, Clegg DJ. Altered Prostaglandin Signaling as a Cause of Thiazide-Induced Hyponatremia. Am J Kidney Dis. 2018; 71(6): 769–771.
  71. Barber J, McKeever TM, McDowell SE, et al. A systematic review and meta-analysis of thiazide-induced hyponatraemia: time to reconsider electrolyte monitoring regimens after thiazide initiation? Br J Clin Pharmacol. 2015; 79(4): 566–577.
  72. Friedman E, Shadel M, Halkin H, et al. Thiazide-induced hyponatremia. Reproducibility by single dose rechallenge and an analysis of pathogenesis. Ann Intern Med. 1989; 110(1): 24–30.
  73. Surma S, Adamczak M. Zaburzenia gospodarki potasowej u chorych z nadciśnieniem tętniczym. Choroby Serca i Naczyń. 2021; 18(1): 1–19.
  74. Roush GC, Ernst ME, Kostis JB, et al. Head-to-head comparisons of hydrochlorothiazide with indapamide and chlorthalidone: antihypertensive and metabolic effects. Hypertension. 2015; 65(5): 1041–1046.
  75. Kreutz R, Algharably EA, Douros A. Reviewing the effects of thiazide and thiazide-like diuretics as photosensitizing drugs on the risk of skin cancer. J Hypertens. 2019; 37(10): 1950–1958.
  76. Nochaiwong S, Chuamanochan M, Ruengorn C, et al. Use of Thiazide Diuretics and Risk of All Types of Skin Cancers: An Updated Systematic Review and Meta-Analysis. Cancers (Basel). 2022; 14(10).
  77. Shao SC, Lai CC, Chen YH, et al. Associations of thiazide use with skin cancers: a systematic review and meta-analysis. BMC Med. 2022; 20(1): 228.
  78. Azoulay L, St-Jean A, Dahl M, et al. Canadian Network for Observational Drug Effect Studies (CNODES) Investigators. Hydrochlorothiazide use and risk of keratinocyte carcinoma and melanoma: A multisite population-based cohort study. J Am Acad Dermatol. 2023; 89(2): 243–253.
  79. Barrera-Chimal J, Lima-Posada I, Bakris GL, et al. Mineralocorticoid receptor antagonists in diabetic kidney disease - mechanistic and therapeutic effects. Nat Rev Nephrol. 2022; 18(1): 56–70.
  80. Rico-Mesa JS, White A, Ahmadian-Tehrani A, et al. Mineralocorticoid Receptor Antagonists: a Comprehensive Review of Finerenone. Curr Cardiol Rep. 2020; 22(11): 140.
  81. Bazoukis G, Thomopoulos C, Tsioufis C. Effect of mineralocorticoid antagonists on blood pressure lowering: overview and meta-analysis of randomized controlled trials in hypertension. J Hypertens. 2018; 36(5): 987–994.
  82. Agarwal R, Rossignol P, Romero A, et al. Patiromer versus placebo to enable spironolactone use in patients with resistant hypertension and chronic kidney disease (AMBER): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2019; 394(10208): 1540–1550.
  83. Navaneethan SD, Nigwekar SU, Sehgal AR, et al. Aldosterone antagonists for preventing the progression of chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009; 4(3): 542–551.
  84. Chung EYm, Ruospo M, Natale P, et al. Aldosterone antagonists in addition to renin angiotensin system antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev. 2020; 10(10): CD007004.
  85. Bakris G, Agarwal R, Anker S, et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. New England Journal of Medicine. 2020; 383(23): 2219–2229.
  86. Zhang MZ, Bao W, Zheng QY, et al. Efficacy and Safety of Finerenone in Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Front Pharmacol. 2022; 13: 819327.
  87. Vukadinović D, Lavall D, Vukadinović AN, et al. True rate of mineralocorticoid receptor antagonists-related hyperkalemia in placebo-controlled trials: A meta-analysis. Am Heart J. 2017; 188: 99–108.
  88. Struthers A, Krum H, Williams GH. A comparison of the aldosterone-blocking agents eplerenone and spironolactone. Clin Cardiol. 2008; 31(4): 153–158.
  89. Pei H, Wang W, Zhao Di, et al. The use of a novel non-steroidal mineralocorticoid receptor antagonist finerenone for the treatment of chronic heart failure: A systematic review and meta-analysis. Medicine (Baltimore). 2018; 97(16): e0254.
  90. Agarwal R, Joseph A, Anker SD, et al. FIDELIO-DKD Investigators. Hyperkalemia Risk with Finerenone: Results from the FIDELIO-DKD Trial. J Am Soc Nephrol. 2022; 33(1): 225–237.
  91. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/215341s000lbl.pdf.
  92. Pitt B, Kober L, Ponikowski P, et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J. 2013; 34(31): 2453–2463.