Vol 3, No 2 (2010)
Prace poglądowe
Published online: 2010-05-25

open access

Page views 699
Article views/downloads 3220
Get Citation

Connect on Social Media

Connect on Social Media

Szybki transport otrzewnowy - implikacje kliniczne i terapeutyczne

Anna Pawłowska, Bogna Kwella, Tomasz Stompór
Forum Nefrologiczne 2010;3(2):82-89.

Abstract

Wysoki transport przezotrzewnowy stanowi zagrożenie zarówno z punktu widzenia długofalowej skuteczności leczenia dializą otrzewnową, jak i rokowania pacjentów leczonych tą metodą. Do najważniejszych konsekwencji wysokiej przepuszczalności należą przewlekłe przewodnienie związane z trudnościami w ultrafiltracji oraz niekorzystne zmiany metaboliczne spowodowane wysoką i rosnącą wraz z czasem leczenia ekspozycją na glukozę. Ostatnio dokonano próby systematycznego podziału typów nadprzepuszczalności i ich klinicznych konsekwencji. Stosowane obecnie i szeroko dostępne modyfikacje w prowadzeniu dializy otrzewnowej pozwoliły w ostatnich latach przezwyciężyć niekorzystny wpływ wysokiego transportu otrzewnowego na rokowanie i stworzyć szanse na długotrwałe i bezpieczne leczenie tą metodą dializ także w tej grupie pacjentów.
Forum Nefrologiczne 2010, tom 3, nr 2, 82-89

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. Eknoyan G, Beck GJ, Cheung AK, et al. Hemodialysis (HEMO) Study Group. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med. 2002; 347(25): 2010–2019.
  2. Paniagua R, Amato D, Vonesh E, et al. Mexican Nephrology Collaborative Study Group. Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J Am Soc Nephrol. 2002; 13(5): 1307–1320.
  3. II. NKF-K/DOQI Clinical Practice Guidelines for Peritoneal Dialysis Adequacy: update 2000. Am J Kidney Dis. 2001; 37(1 Suppl 1): S65–S136.
  4. Dombros N, Dratwa M, Feriani M, et al. EBPG Expert Group on Peritoneal Dialysis. European best practice guidelines for peritoneal dialysis. 7 Adequacy of peritoneal dialysis. Nephrol Dial Transplant. 2005; 20 Suppl 9: ix24–ix27.
  5. Churchill DN, Thorpe KE, Nolph KD, et al. Increased peritoneal membrane transport is associated with decreased patient and technique survival for continuous peritoneal dialysis patients. The Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol. 1998; 9(7): 1285–1292.
  6. Wang T, Heimbürger O, Waniewski J, et al. Increased peritoneal permeability is associated with decreased fluid and small-solute removal and higher mortality in CAPD patients. Nephrol Dial Transplant. 1998; 13(5): 1242–1249.
  7. Davies SJ, Phillips L, Russell GI. Peritoneal solute transport predicts survival on CAPD independently of residual renal function. Nephrol Dial Transplant. 1998; 13(4): 962–968.
  8. Chung SH, Chu WS, Lee HA, et al. Peritoneal transport characteristics, comorbid diseases and survival in CAPD patients. Perit Dial Int. 2000; 20(5): 541–547.
  9. Chung SH, Heimbürger O, Lindholm B, et al. Peritoneal dialysis patient survival: a comparison between a Swedish and a Korean centre. Nephrol Dial Transplant. 2005; 20(6): 1207–1213.
  10. Rumpsfeld M, McDonald SP, Johnson DW. Higher peritoneal transport status is associated with higher mortality and technique failure in the Australian and New Zealand peritoneal dialysis patient populations. J Am Soc Nephrol. 2006; 17(1): 271–278.
  11. Brimble KS, Walker M, Margetts PJ, et al. Meta-analysis: peritoneal membrane transport, mortality, and technique failure in peritoneal dialysis. J Am Soc Nephrol. 2006; 17(9): 2591–2598.
  12. Brown EA, Davies SJ, Rutherford P, et al. EAPOS Group. Survival of functionally anuric patients on automated peritoneal dialysis: the European APD Outcome Study. J Am Soc Nephrol. 2003; 14(11): 2948–2957.
  13. Szeto CC, Law MC, Wong TY, et al. Peritoneal transport status correlates with morbidity but not longitudinal change of nutritional status of continuous ambulatory peritoneal dialysis patients: a 2-year prospective study. Am J Kidney Dis. 2001; 37(2): 329–336.
  14. Bidirectional peritoneal transport of albumin in continuous ambulatory peritoneal dialysis. Nephrology Dialysis Transplantation. 1995; 21((supl. 3)): 80–85.
  15. Reyes MJF, Bajo MA, Hevía C, et al. Inherent high peritoneal transport and ultrafiltration deficiency: their mid-term clinical relevance. Nephrol Dial Transplant. 2007; 22(1): 218–223.
  16. Churchill DN. The ADEMEX Study: make haste slowly. J Am Soc Nephrol. 2002; 13(5): 1415–1418.
  17. Davies SJ. Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int. 2004; 66(6): 2437–2445.
  18. Davies SJ, Phillips L, Naish PF, et al. Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol. 2001; 12(5): 1046–1051.
  19. Tonbul Z, Altintepe L, Sözlü C, et al. The association of peritoneal transport properties with 24-hour blood pressure levels in CAPD patients. Perit Dial Int. 2003; 23(1): 46–52.
  20. Zhe Xw, Tian Xk, Chen W, et al. Association between arterial stiffness and peritoneal small solute transport rate. Artif Organs. 2008; 32(5): 416–419.
  21. Tzamaloukas AH, Saddler MC, Murata GH, et al. Symptomatic fluid retention in patients on continuous peritoneal dialysis. J Am Soc Nephrol. 1995; 6(2): 198–206.
  22. Burkart J. Metabolic consequences of peritoneal dialysis. Semin Dial. 2004; 17(6): 498–504.
  23. Jiang Na, Qian J, Lin A, et al. Initiation of glucose-based peritoneal dialysis is associated with increased prevalence of metabolic syndrome in non-diabetic patients with end-stage renal disease. Blood Purif. 2008; 26(5): 423–428.
  24. Zheng ZH, Sederholm F, Anderstam B, et al. Acute effects of peritoneal dialysis solutions on appetite in non-uremic rats. Kidney Int. 2001; 60(6): 2392–2398.
  25. Kang DH, Yoon KI, Choi KB, et al. Relationship of peritoneal membrane transport characteristics to the nutritional status in CAPD patients. Nephrol Dial Transplant. 1999; 14(7): 1715–1722.
  26. Park JT, Chang TIk, Kim DKi, et al. Metabolic syndrome predicts mortality in non-diabetic patients on continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant. 2010; 25(2): 599–604.
  27. Margetts PJ, McMullin JP, Rabbat CG, et al. Peritoneal membrane transport and hypoalbuminemia: cause or effect? Perit Dial Int. 2000; 20(1): 14–18.
  28. Kang SW, Lee SW, Lee IH, et al. Factors affecting low values of serum albumin in CAPD patients. Adv Perit Dial. 1996; 12: 288–292.
  29. Sezer S, Tutal E, Arat Z, et al. Peritoneal transport status influence on atherosclerosis/inflammation in CAPD patients. J Ren Nutr. 2005; 15(4): 427–434.
  30. Chung SH, Heimbürger O, Stenvinkel P, et al. Influence of peritoneal transport rate, inflammation, and fluid removal on nutritional status and clinical outcome in prevalent peritoneal dialysis patients. Perit Dial Int. 2003; 23(2): 174–183.
  31. Konings CJ, Kooman JP, Schonck M, et al. Fluid status in CAPD patients is related to peritoneal transport and residual renal function: evidence from a longitudinal study. Nephrol Dial Transplant. 2003; 18(4): 797–803.
  32. Wiggins KJ, McDonald SP, Brown FG, et al. High membrane transport status on peritoneal dialysis is not associated with reduced survival following transfer to haemodialysis. Nephrol Dial Transplant. 2007; 22(10): 3005–3012.
  33. Pecoits-Filho R, Stenvinkel P, Wang AYM, et al. Chronic inflammation in peritoneal dialysis: the search for the holy grail? Perit Dial Int. 2004; 24(4): 327–339.
  34. Chung SH, Heimbürger O, Stenvinkel P, et al. Association between residual renal function, inflammation and patient survival in new peritoneal dialysis patients. Nephrol Dial Transplant. 2003; 18(3): 590–597.
  35. Krediet RT. Evaluation of peritoneal membrane integrity. J Nephrol. 1997; 10(5): 238–244.
  36. Kim YL. Update on mechanisms of ultrafiltration failure. Perit Dial Int. 2009; 29 Suppl 2: S123–S127.
  37. Finkelstein F, Healy H, Abu-Alfa A, et al. Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration. J Am Soc Nephrol. 2005; 16(2): 546–554.
  38. Lin A, Qian J, Li X, et al. Icodextrin National Multi-center Cooperation Group. Randomized controlled trial of icodextrin versus glucose containing peritoneal dialysis fluid. Clin J Am Soc Nephrol. 2009; 4(11): 1799–1804.
  39. Davies SJ, Woodrow G, Donovan K, et al. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J Am Soc Nephrol. 2003; 14(9): 2338–2344.
  40. Konings CJ, Kooman JP, Schonck M, et al. Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study. Kidney Int. 2003; 63(4): 1556–1563.
  41. Pecoits-Filho R, Mujais S, Lindholm B. Future of icodextrin as an osmotic agent in peritoneal dialysis. Kidney Int Suppl. 2002(81): S80–S87.
  42. Davies SJ, Brown EA, Frandsen NE, et al. EAPOS Group. Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription. Kidney Int. 2005; 67(4): 1609–1615.
  43. Furuya R, Odamaki M, Kumagai H, et al. Beneficial effects of icodextrin on plasma level of adipocytokines in peritoneal dialysis patients. Nephrol Dial Transplant. 2006; 21(2): 494–498.
  44. Paniagua R, Ventura Md, Avila-Díaz M, et al. Icodextrin improves metabolic and fluid management in high and high-average transport diabetic patients. Perit Dial Int. 2009; 29(4): 422–432.
  45. Davies SJ. Mitigating peritoneal membrane characteristics in modern peritoneal dialysis therapy. Kidney Int Suppl. 2006(103): S76–S83.
  46. Nessim SJ, Perl J, Bargman JM. The renin-angiotensin-aldosterone system in peritoneal dialysis: is what is good for the kidney also good for the peritoneum? Kidney Int. 2010; 78(1): 23–28.
  47. Heimburger O. Lipid disorders, statins and the peritoneal membrane. Contrib Nephrol. 2009; 163: 177–182.



Renal Disease and Transplantation Forum