Vol 3, No 4 (2010)
Prace poglądowe
Published online: 2010-12-30

open access

Page views 1751
Article views/downloads 44167
Get Citation

Connect on Social Media

Connect on Social Media

Hepcydyna - hormon wątrobowy kontrolujący homeostazę żelaza

Lesław Filipczyk, Przemysław Król, Antoni Wystrychowski
Forum Nefrologiczne 2010;3(4):233-242.

Abstract

Ostatnie 10-lecie przyniosło znaczący wzrost wiedzy dotyczącej ustrojowej gospodarki żelazem, na co szczególny wpływ miało odkrycie hepcydyny. Hormon ten, odkryty w 2000 roku, jest produkowanym w wątrobie 25-aminokwasowym polipeptydem i powoduje internalizację ferroportyny w enterocytach dwunastnicy, hamując wchłanianie żelaza w przewodzie pokarmowym. Z kolei inaktywacja ferroportyny w makrofagach skutkuje zahamowaniem uwalniania do krwi krążącej żelaza uwolnionego ze sfagocytowanych erytrocytów. Precyzyjna regulacja stężeń hepcydyny ma kluczowe znaczenie dla utrzymania stężeń żelaza w wąskim, wymaganym przez ustrój, zakresie. Poza ustrojowymi zasobami żelaza na syntezę hormonu wpływają nasilenie erytropoezy i niedotlenienie organizmu, ale również - co ma duże znaczenie w niedokrwistości stanu zapalnego - cytokiny prozapalne, zwłaszcza interleukina 1, interleukina 6 i TNF-α. Oznaczanie stężeń hepcydyny w przyszłości może się stać ważnym parametrem w całościowej ocenie gospodarki żelazowej organizmu, wpływając również na podejmowane decyzje terapeutyczne.
Forum Nefrologiczne 2010, tom 3, nr 4, 233-242

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. Beaumont C, Delaby C. Recycling iron in normal and pathological states. Semin Hematol. 2009; 46(4): 328–338.
  2. Shayeghi M, Latunde-Dada GO, Oakhill JS, et al. Identification of an intestinal heme transporter. Cell. 2005; 122(5): 789–801.
  3. Andrews NC. Forging a field: the golden age of iron biology. Blood. 2008; 112(2): 219–230.
  4. Nemeth E. Targeting the hepcidin-ferroportin axis in the diagnosis and treatment of anemias. Adv Hematol. 2010.
  5. Malyszko J. Hepcidin assays: ironing out some details. Clin J Am Soc Nephrol. 2009; 4(6): 1015–1016.
  6. Rivera S, Nemeth E, Gabayan V, et al. Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs. Blood. 2005; 106(6): 2196–2199.
  7. Nicolas G, Bennoun M, Porteu A, et al. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci U S A. 2002; 99(7): 4596–4601.
  8. Viatte L, Lesbordes-Brion JC, Lou DQ, et al. Deregulation of proteins involved in iron metabolism in hepcidin-deficient mice. Blood. 2005; 105(12): 4861–4864.
  9. Ganz T. Iron homeostasis: fitting the puzzle pieces together. Cell Metab. 2008; 7(4): 288–290.
  10. Dallalio G, Law E, Means RT. Hepcidin inhibits in vitro erythroid colony formation at reduced erythropoietin concentrations. Blood. 2006; 107(7): 2702–2704.
  11. Andriopoulos B, Corradini E, Xia Y, et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet. 2009; 41(4): 482–487.
  12. Meynard D, Kautz L, Darnaud V, et al. Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat Genet. 2009; 41(4): 478–481.
  13. Silvestri L, Pagani A, Camaschella C. Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood. 2008; 111(2): 924–931.
  14. Lee P. Role of matriptase-2 (TMPRSS6) in iron metabolism. Acta Haematol. 2009; 122(2-3): 87–96.
  15. West AP, Bennett MJ, Sellers VM, et al. Comparison of the interactions of transferrin receptor and transferrin receptor 2 with transferrin and the hereditary hemochromatosis protein HFE. J Biol Chem. 2000; 275(49): 38135–38138.
  16. Goswami T, Andrews NC. Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J Biol Chem. 2006; 281(39): 28494–28498.
  17. Schmidt PJ, Toran PT, Giannetti AM, et al. The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. Cell Metab. 2008; 7(3): 205–214.
  18. Zhang AS, Enns CA. Molecular mechanisms of normal iron homeostasis. Hematology Am Soc Hematol Educ Program. 2009: 207–214.
  19. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest. 2007; 117(7): 1926–1932.
  20. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005; 352(10): 1011–1023.
  21. Kemna E, Pickkers P, Nemeth E, et al. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood. 2005; 106(5): 1864–1866.
  22. Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004; 113(9): 1271–1276.
  23. Peyssonnaux C, Zinkernagel AS, Datta V, et al. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood. 2006; 107(9): 3727–3732.
  24. Donderski R, Kardymowicz A, Manitius J. Niedokrwistość nerkopochodna. Wybrane aspekty diagnostyki i terapii. Choroby Serca i Naczyń. 2009; 6: 82–93.
  25. Taes YEC, Wuyts B, Boelaert JR, et al. Prohepcidin accumulates in renal insufficiency. Clin Chem Lab Med. 2004; 42(4): 387–389.
  26. Malyszko J, Malyszko JS, Pawlak K, et al. Hepcidin, iron status, and renal function in chronic renal failure, kidney transplantation, and hemodialysis. Am J Hematol. 2006; 81(11): 832–837.
  27. Zaritsky J, Young B, Wang HJ, et al. Hepcidin--a potential novel biomarker for iron status in chronic kidney disease. Clin J Am Soc Nephrol. 2009; 4(6): 1051–1056.
  28. Elliott J, Mishler D, Agarwal R. Hyporesponsiveness to erythropoietin: causes and management. Adv Chronic Kidney Dis. 2009; 16(2): 94–100.
  29. Taylor JE, Peat N, Porter C, et al. Regular low-dose intravenous iron therapy improves response to erythropoietin in haemodialysis patients. Nephrol Dial Transplant. 1996; 11(6): 1079–1083.
  30. Singh AK, Coyne DW, Shapiro W, et al. DRIVE Study Group. Predictors of the response to treatment in anemic hemodialysis patients with high serum ferritin and low transferrin saturation. Kidney Int. 2007; 71(11): 1163–1171.
  31. Kapoian T, O'Mara NB, Singh AK, et al. Ferric gluconate reduces epoetin requirements in hemodialysis patients with elevated ferritin. J Am Soc Nephrol. 2008; 19(2): 372–379.
  32. Kemna EH, Kartikasari AER, van Tits LJH, et al. Regulation of hepcidin: insights from biochemical analyses on human serum samples. Blood Cells Mol Dis. 2008; 40(3): 339–346.
  33. Kemna EH, Tjalsma H, Podust VN, et al. Mass spectrometry-based hepcidin measurements in serum and urine: analytical aspects and clinical implications. Clin Chem. 2007; 53(4): 620–628.
  34. Murphy AT, Witcher DR, Luan P, et al. Quantitation of hepcidin from human and mouse serum using liquid chromatography tandem mass spectrometry. Blood. 2007; 110(3): 1048–1054.
  35. Peslova G, Petrak J, Kuzelova K, et al. Hepcidin, the hormone of iron metabolism, is bound specifically to alpha-2-macroglobulin in blood. Blood. 2009; 113(24): 6225–6236.
  36. Kroot JJC, Kemna EH, Bansal SS, et al. Results of the first international round robin for the quantification of urinary and plasma hepcidin assays: need for standardization. Haematologica. 2009; 94(12): 1748–1752.
  37. Kato A, Tsuji T, Luo J, et al. Association of prohepcidin and hepcidin-25 with erythropoietin response and ferritin in hemodialysis patients. Am J Nephrol. 2008; 28(1): 115–121.



Renal Disease and Transplantation Forum