Vol 9, No 2 (2023)
Review paper
Published online: 2023-04-05
Get Citation

Factors affecting the clinical picture of atopic dermatitis

Joanna Krzysiek1, Aleksandra Lesiak1, Joanna Narbutt1
·
Forum Dermatologicum 2023;9(2):61-70.
Affiliations
  1. Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, Poland

paid access

Vol 9, No 2 (2023)
REVIEW ARTICLES
Published online: 2023-04-05

Abstract

Atopic dermatitis (AD) is a chronic and recurrent disease affecting both, children and adults. Over the last decades, its prevalence has been constantly growing, causing significant psychological and social issues. Risk factors have been associated with the development of AD such as genetic, environmental, and abnormal immune response, as well as disorders of the skin barrier and skin microbiome. The following review comprehensively discusses all aspects affecting the clinical picture of AD. It allows a better understanding of the mechanisms underlying disease and may initiate appropriate treatment.

Abstract

Atopic dermatitis (AD) is a chronic and recurrent disease affecting both, children and adults. Over the last decades, its prevalence has been constantly growing, causing significant psychological and social issues. Risk factors have been associated with the development of AD such as genetic, environmental, and abnormal immune response, as well as disorders of the skin barrier and skin microbiome. The following review comprehensively discusses all aspects affecting the clinical picture of AD. It allows a better understanding of the mechanisms underlying disease and may initiate appropriate treatment.

Get Citation

Keywords

atopic dermatitis, etiopathogenesis, risk factors

About this article
Title

Factors affecting the clinical picture of atopic dermatitis

Journal

Forum Dermatologicum

Issue

Vol 9, No 2 (2023)

Article type

Review paper

Pages

61-70

Published online

2023-04-05

Page views

2221

Article views/downloads

32

DOI

10.5603/FD.a2023.0008

Bibliographic record

Forum Dermatologicum 2023;9(2):61-70.

Keywords

atopic dermatitis
etiopathogenesis
risk factors

Authors

Joanna Krzysiek
Aleksandra Lesiak
Joanna Narbutt

References (102)
  1. Nutten S. Atopic dermatitis: global epidemiology and risk factors. Ann Nutr Metab. 2015; 66 Suppl 1: 8–16.
  2. Eichenfield LF, Tom WL, Chamlin SL, et al. Guidelines of care for the management of atopic dermatitis: Section 1. Diagnosis and assessment of atopic dermatitis. J Am Acad Dermatol. 2014; 70(2): 338–351.
  3. Kaufman BP, Guttman-Yassky E, Alexis AF. Atopic dermatitis in diverse racial and ethnic groups — Variations in epidemiology, genetics, clinical presentation and treatment. Exp Dermatol. 2018; 27(4): 340–357.
  4. Blume-Peytavi U, Metz M. Atopic dermatitis in children: management of pruritus. J Eur Acad Dermatol Venereol. 2012; 26 Suppl 6: 2–8.
  5. Silverberg JI, Gelfand JM, Margolis DJ, et al. Patient burden and quality of life in atopic dermatitis in US adults: A population-based cross-sectional study. Ann Allergy Asthma Immunol. 2018; 121(3): 340–347.
  6. Hill DA, Spergel JM. The atopic march: Critical evidence and clinical relevance. Ann Allergy Asthma Immunol. 2018; 120(2): 131–137.
  7. Silverberg JI. Comorbidities and the impact of atopic dermatitis. Ann Allergy Asthma Immunol. 2019; 123(2): 144–151.
  8. Seidenari S, Giusti G. Objective assessment of the skin of children affected by atopic dermatitis: a study of pH, capacitance and TEWL in eczematous and clinically uninvolved skin. Acta Derm Venereol. 1995; 75(6): 429–433.
  9. Lesiak A, Zakrzewski M, Przybyłowska K, et al. Combined occurrence of filaggrin mutations and IL-10 or IL-13 polymorphisms predisposes to atopic dermatitis. Exp Dermatol. 2011; 20(6): 491–495.
  10. Palmer C, Irvine A, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nature Genetics. 2006; 38(4): 441–446.
  11. Gimalova GF, Karunas AS, Fedorova YY, et al. The study of filaggrin gene mutations and copy number variation in atopic dermatitis patients from Volga-Ural region of Russia. Gene. 2016; 591(1): 85–89.
  12. Margolis DJ, Mitra N, Gochnauer H, et al. Uncommon filaggrin variants are associated with persistent atopic dermatitis in African Americans. J Invest Dermatol. 2018; 138(7): 1501–1506.
  13. Margolis DJ, Mitra N, Wubbenhorst B, et al. Association of filaggrin loss-of-function variants with race in children with atopic dermatitis. JAMA Dermatol. 2019; 155(11): 1269–1276.
  14. Margolis DJ, Gupta J, Apter AJ, et al. Filaggrin-2 variation is associated with more persistent atopic dermatitis in African American subjects. J Allergy Clin Immunol. 2014; 133(3): 784–789.
  15. Egawa G, Kabashima K. Barrier dysfunction in the skin allergy. Allergol Int. 2018; 67(1): 3–11.
  16. Brattsand M, Stefansson K, Lundh C, et al. A proteolytic cascade of kallikreins in the stratum corneum. J Invest Dermatol. 2005; 124(1): 198–203.
  17. Cabanillas B, Novak N. Atopic dermatitis and filaggrin. Curr Opin Immunol. 2016; 42: 1–8.
  18. Jungersted JM, Scheer H, Mempel M, et al. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy. 2010; 65(7): 911–918.
  19. van Smeden J, Janssens M, Kaye ECJ, et al. The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients. Exp Dermatol. 2014; 23(1): 45–52.
  20. Rawlings AV, Harding CR. Moisturization and skin barrier function. Dermatol Ther. 2004; 17 Suppl 1: 43–48.
  21. Oyoshi MK, Murphy GF, Geha RS. Filaggrin-deficient mice exhibit TH17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen. J Allergy Clin Immunol. 2009; 124(3): 485–493.e1.
  22. Niedoszytko B. Czy atopowe zapalenie skóry jest chorobą dziedziczną? In: Nowicki R. ed. ABC atopowego zapalenia skóry. AZS w pytaniach i odpowiedziach. Termedia Wydawnictwa Medyczne, Poznań 2015: 11–21.
  23. Bin L, Leung DYM. Genetic and epigenetic studies of atopic dermatitis. Allergy Asthma Clin Immunol. 2016; 12: 52.
  24. Mu Z, Zhang J. The role of genetics, the environment, and epigenetics in atopic dermatitis. Adv Exp Med Biol. 2020; 1253: 107–140.
  25. Hidaka T, Ogawa E, Kobayashi EH, et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin. Nat Immunol. 2017; 18(1): 64–73.
  26. Kim K, et al. Influences of environmental chemicals on atopic dermatitis. Toxicol Res. 2015; 31(2): 89–96.
  27. Montnemery P, Nihlén U, Göran Löfdahl C, et al. Prevalence of self-reported eczema in relation to living environment, socio-economic status and respiratory symptoms assessed in a questionnaire study. BMC Dermatol. 2003; 3: 4.
  28. Kim J, Han Y, Ahn JH, et al. Airborne formaldehyde causes skin barrier dysfunction in atopic dermatitis. Br J Dermatol. 2016; 175(2): 357–363.
  29. Lee H, Shin JJ, Bae HC, et al. Toluene downregulates filaggrin expression via the extracellular signal-regulated kinase and signal transducer and activator of transcription-dependent pathways. J Allergy Clin Immunol. 2017; 139(1): 355–358.e5.
  30. Silverberg JI, Hanifin J, Simpson EL. Climatic factors are associated with childhood eczema prevalence in the United States. J Invest Dermatol. 2013; 133(7): 1752–1759.
  31. Engebretsen KA, Bager P, Wohlfahrt J, et al. Prevalence of atopic dermatitis in infants by domestic water hardness and season of birth: Cohort study. J Allergy Clin Immunol. 2017; 139(5): 1568–1574.e1.
  32. Gfatter R, Hackl P, Braun F. Effects of soap and detergents on skin surface pH, stratum corneum hydration and fat content in infants. Dermatology. 1997; 195(3): 258–262.
  33. Törmä H, Lindberg M, Berne B. Skin barrier disruption by sodium lauryl sulfate-exposure alters the expressions of involucrin, transglutaminase 1, profilaggrin, and kallikreins during the repair phase in human skin in vivo. J Invest Dermatol. 2008; 128(5): 1212–1219.
  34. Steinhoff M, Neisius U, Ikoma A, et al. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci. 2003; 23(15): 6176–6180.
  35. Wang IJ, Chen SL, Lu TP, et al. Prenatal smoke exposure, DNA methylation, and childhood atopic dermatitis. Clin Exp Allergy. 2013; 43(5): 535–543.
  36. Yoshihisa Y, Shimizu T. Metal allergy and systemic contact dermatitis: an overview. Dermatol Res Pract. 2012: 749561.
  37. Thyssen JP, McFadden JP, Kimber I. The multiple factors affecting the association between atopic dermatitis and contact sensitization. Allergy. 2014; 69(1): 28–36.
  38. Yim E, Baquerizo Nole KL, Tosti A. Contact dermatitis caused by preservatives. Dermatitis. 2014; 25(5): 215–231.
  39. Nowicki R, Trzeciak M, Kaczmarski M, et al. Atopowe zapalenie skóry. Interdyscyplinarne rekomendacje diagnostyczno-terapeutyczne Polskiego Towarzystwa Dermatologicznego, Polskiego Towarzystwa Alergologicznego, Polskiego Towarzystwa Pediatrycznego oraz Polskiego Towarzystwa Medycyny Rodzinnej. Część I. Profilaktyka, leczenie miejscowe i fototerapia. Dermatol Rev/Przegl Dermatol. 219; 106(4): 354–374.
  40. Björkstén B. Genetic and environmental risk factors for the development of food allergy. Curr Opin Allergy Clin Immunol. 2005; 5(3): 249–253.
  41. Kong HH, Oh J, Deming C, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012; 22(5): 850–859.
  42. Leung DYM. Infection in atopic dermatitis. Curr Opin Pediatr. 2003; 15(4): 399–404.
  43. Williams MR, Gallo RL. Evidence that human skin microbiome dysbiosis promotes atopic dermatitis. J Invest Dermatol. 2017; 137(12): 2460–2461.
  44. Spaulding AR, Salgado-Pabón W, Kohler PL, et al. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev. 2013; 26(3): 422–447.
  45. Cheung GYC, Joo HS, Chatterjee SS, et al. Phenol-soluble modulins - critical determinants of staphylococcal virulence. FEMS Microbiol Rev. 2014; 38(4): 698–719.
  46. Otto M. Staphylococcus aureus toxins. Curr Opin Microbiol. 2014; 17: 32–37.
  47. Nakamura Y, Oscherwitz J, Cease KB, et al. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature. 2013; 503(7476): 397–401.
  48. Nakatsuji T, Chen TH, Two AM, et al. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. J Invest Dermatol. 2016; 136(11): 2192–2200.
  49. Simpson EL, Villarreal M, Jepson B, et al. Patients with atopic dermatitis colonized with staphylococcus aureus have a distinct phenotype and endotype. J Invest Dermatol. 2018; 138(10): 2224–2233.
  50. Kaesler S, Volz T, Skabytska Y, et al. Toll-like receptor 2 ligands promote chronic atopic dermatitis through IL-4-mediated suppression of IL-10. J Allergy Clin Immunol. 2014; 134(1): 92–99.
  51. Mrabet-Dahbi S, Dalpke AH, Niebuhr M, et al. The Toll-like receptor 2 R753Q mutation modifies cytokine production and Toll-like receptor expression in atopic dermatitis. J Allergy Clin Immunol. 2008; 121(4): 1013–1019.
  52. Oh DY, Schumann RR, Hamann L, et al. Association of the toll-like receptor 2 A-16934T promoter polymorphism with severe atopic dermatitis. Allergy. 2009; 64(11): 1608–1615.
  53. Allakhverdi Z, Smith DE, Comeau MR, et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med. 2007; 204(2): 253–258.
  54. Al Kindi A, Williams H, Matsuda K, et al. Staphylococcus aureus second immunoglobulin-binding protein drives atopic dermatitis via IL-33. J Allergy Clin Immunol. 2021; 147(4): 1354–1368.e3.
  55. Teufelberger AR, Nordengrün M, Braun H, et al. The IL-33/ST2 axis is crucial in type 2 airway responses induced by Staphylococcus aureus-derived serine protease-like protein D. J Allergy Clin Immunol. 2018; 141(2): 549–559.e7.
  56. Al Kindi A, Williams H, Matsuda K, et al. Staphylococcus aureus second immunoglobulin-binding protein drives atopic dermatitis via IL-33. J Allergy Clin Immunol. 2021; 147(4): 1354–1368.e3.
  57. Liu H, Archer NK, Dillen CA, et al. Staphylococcus aureus epicutaneous exposure drives skin inflammation via il-36-mediated t cell responses. Cell Host Microbe. 2017; 22(5): 653–666.e5.
  58. Nakagawa S, Matsumoto M, Katayama Y, et al. Staphylococcus aureus virulent psmα peptides induce keratinocyte alarmin release to orchestrate il-17-dependent skin inflammation. Cell Host Microbe. 2017; 22(5): 667–677.e5.
  59. Yu J, Oh MH, Park JU, et al. Epicutaneous exposure to staphylococcal superantigen enterotoxin B enhances allergic lung inflammation via an IL-17A dependent mechanism. PLoS One. 2012; 7(7): e39032.
  60. Tsilochristou O, Toit Gdu, Sayre P, et al. Association of Staphylococcus aureus colonization with food allergy occurs independently of eczema severity. J Allergy Clinical Immunol. 2019; 144(2): 494–503.
  61. Tsakok T, Marrs T, Mohsin M, et al. Does atopic dermatitis cause food allergy? A systematic review. J Allergy Clin Immunol. 2016; 137(4): 1071–1078.
  62. Jones AL, Curran-Everett D, Leung DYM. Food allergy is associated with Staphylococcus aureus colonization in children with atopic dermatitis. J Allergy Clin Immunol. 2016; 137(4): 1247–1248.e3.
  63. Hrestak D, Matijašić M, Čipčić Paljetak H, et al. Skin microbiota in atopic dermatitis. Int J Mol Sci. 2022; 23(7).
  64. Guttman-Yassky E, Waldman A, Ahluwalia J, et al. Atopic dermatitis: pathogenesis. Semin Cutan Med Surg. 2017; 36(3): 100–103.
  65. Furue M, Chiba T, Tsuji G, et al. Atopic dermatitis: immune deviation, barrier dysfunction, IgE autoreactivity and new therapies. Allergol Int. 2017; 66(3): 398–403.
  66. Gittler JK, Shemer A, Suárez-Fariñas M, et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol. 2012; 130(6): 1344–1354.
  67. Gittler JK, Krueger JG, Guttman-Yassky E. Atopic dermatitis results in intrinsic barrier and immune abnormalities: implications for contact dermatitis. J Allergy Clin Immunol. 2013; 131(2): 300–313.
  68. Tsakok T, Woolf R, Smith CH, et al. Atopic dermatitis: the skin barrier and beyond. Br J Dermatol. 2019; 180(3): 464–474.
  69. Furue M, Furue M, et al. OX40L-OX40 signaling in atopic dermatitis. J Clin Med. 2021; 10(12): 2578.
  70. Gawrysiak M, et al. Rola komórek ILC2 w rozwoju zapalenia alergicznego. Alergia Astma Immunologia. 2020; 25: 64–69.
  71. Kim J, Kim BE, Leung DYM. Pathophysiology of atopic dermatitis: Clinical implications. Allergy Asthma Proc. 2019; 40(2): 84–92.
  72. Shang H, Cao XL, Wan YJ, et al. IL-4 gene polymorphism may contribute to an increased risk of atopic dermatitis in children. Dis Markers. 2016: 1021942.
  73. Lesiak A, Kuna P, Zakrzewski M, et al. Combined occurrence of filaggrin mutations and IL-10 or IL-13 polymorphisms predisposes to atopic dermatitis. Exp Dermatol. 2011; 20(6): 491–495.
  74. Akdis CA, Arkwright PD, Brüggen MC, et al. Type 2 immunity in the skin and lungs. Allergy. 2020; 75(7): 1582–1605.
  75. Agrawal R, Woodfolk JA. Skin barrier defects in atopic dermatitis. Curr Allergy Asthma Rep. 2014; 14(5): 433.
  76. Bodoor K, Al-Qarqaz F, Heis LAl, et al. IL-33/13 axis and IL-4/31 axis play distinct roles in inflammatory process and itch in psoriasis and atopic dermatitis. Clin Cosmet Investig Dermatol. 2020; 13: 419–424.
  77. Rabenhorst A, Hartmann K. Interleukin-31: a novel diagnostic marker of allergic diseases. Curr Allergy Asthma Rep. 2014; 14(4): 423.
  78. Wong CK, Leung KML, Qiu HN, et al. Activation of eosinophils interacting with dermal fibroblasts by pruritogenic cytokine IL-31 and alarmin IL-33: implications in atopic dermatitis. PLoS One. 2012; 7(1): e29815.
  79. Yagi Y, Andoh A, Nishida A, et al. Interleukin-31 stimulates production of inflammatory mediators from human colonic subepithelial myofibroblasts. Int J Mol Med. 2007; 19(6): 941–946.
  80. Kimura M, Tsuruta S, Yoshida T. Correlation of house dust mite-specific lymphocyte proliferation with IL-5 production, eosinophilia, and the severity of symptoms in infants with atopic dermatitis. J Allergy Clin Immunol. 1998; 45(10): 84–89.
  81. Oldhoff JM, Darsow U, Werfel T, et al. Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis. Allergy. 2005; 60(5): 693–696.
  82. Czarnowicki T, Krueger JG, Guttman-Yassky E. Skin barrier and immune dysregulation in atopic dermatitis: an evolving story with important clinical implications. J Allergy Clin Immunol Pract. 2014; 2(4): 371–380.
  83. Oliva M, Renert-Yuval Y, Guttman-Yassky E. The 'omics' revolution: redefining the understanding and treatment of allergic skin diseases. Curr Opin Allergy Clin Immunol. 2016; 16(5): 469–476.
  84. Ma L, Xue HB, Guan XH, et al. Possible role of Th17 cells and IL-17 in the pathogenesis of atopic dermatitis in northern China. J Dermatol Sci. 2012; 68(1): 66–68.
  85. Koga C, Kabashima K, Shiraishi N, et al. Possible pathogenic role of Th17 cells for atopic dermatitis. J Invest Dermatol. 2008; 128(11): 2625–2630.
  86. Nakajima S, Kitoh A, Egawa G, et al. IL-17A as an inducer for Th2 immune responses in murine atopic dermatitis models. J Invest Dermatol. 2014; 134(8): 2122–2130.
  87. Hayashida S, Uchi H, Moroi Y, et al. Decrease in circulating Th17 cells correlates with increased levels of CCL17, IgE and eosinophils in atopic dermatitis. J Dermatol Sci. 2011; 61(3): 180–186.
  88. Dhingra N, Suárez-Fariñas M, Fuentes-Duculan J, et al. Attenuated neutrophil axis in atopic dermatitis compared to psoriasis reflects TH17 pathway differences between these diseases. J Allergy Clin Immunol. 2013; 132(2): 498–501.e3.
  89. Niebuhr M, Gathmann M, Scharonow H, et al. Staphylococcal alpha-toxin is a strong inducer of interleukin-17 in humans. Infect Immun. 2011; 79(4): 1615–1622.
  90. Maalmi H, Beraies A, Charad R, et al. IL-17A and IL-17F genes variants and susceptibility to childhood asthma in Tunisia. J Asthma. 2014; 51(4): 348–354.
  91. Zhai C, Li S, Feng W, et al. Association of interleukin-17a rs2275913 gene polymorphism and asthma risk: a meta-analysis. Arch Med Sci. 2018; 14(6): 1204–1211.
  92. Klonowska J, Gleń J, Nowicki RJ, et al. Combination of FLG mutations and SNPs of IL-17A and IL-19 influence on atopic dermatitis occurrence. Advances Dermatol Allergol. 2022; 39(1): 200–208.
  93. Shibata S, Saeki H, Tsunemi Y, et al. IL-17F single nucleotide polymorphism is not associated with psoriasis vulgaris or atopic dermatitis in the Japanese population. J Dermatol Sci. 2009; 53(2): 163–165.
  94. Holster A, Teräsjärvi J, Barkoff AM, et al. IL17F rs763780 single nucleotide polymorphism is associated with asthma after bronchiolitis in infancy. Acta Paediatr. 2021; 110(1): 222–227.
  95. Vandeghinste N, Klattig J, Jagerschmidt C, et al. Neutralization of IL-17C reduces skin inflammation in mouse models of psoriasis and atopic dermatitis. J Invest Dermatol. 2018; 138(7): 1555–1563.
  96. Muraro A, Lemanske RF, Hellings PW, et al. Precision medicine in patients with allergic diseases: Airway diseases and atopic dermatitis-PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2016; 137(5): 1347–1358.
  97. Fujita H. The role of IL-22 and Th22 cells in human skin diseases. J Dermatol Sci. 2013; 72(1): 3–8.
  98. Howell MD, Kim BE, Gao P, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2007; 120(1): 150–155.
  99. Howell MD, Kim BE, Gao P, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2007; 120(1): 150–155.
  100. Kim BE, Bin L, Ye YM, et al. IL-25 enhances HSV-1 replication by inhibiting filaggrin expression, and acts synergistically with Th2 cytokines to enhance HSV-1 replication. J Invest Dermatol. 2013; 133(12): 2678–2685.
  101. Puar N, Chovatiya R, Paller AS. New treatments in atopic dermatitis. Ann Allergy Asthma Immunol. 2021; 126(1): 21–31.
  102. Czarnowicki T, He H, Krueger JG, et al. Atopic dermatitis endotypes and implications for targeted therapeutics. J Allergy Clin Immunol. 2019; 143(1): 1–11.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., ul. Świętokrzyska 73, 80–180 Gdańsk, Poland
phone: +48 58 320 94 94, fax: +48 58 320 94 60, e-mail: viamedica@viamedica.pl