Vol 4, No 2 (2018)
Review paper
Published online: 2018-08-17

open access

Page views 667
Article views/downloads 6759
Get Citation

Connect on Social Media

Connect on Social Media

The role of oxidative-antioxidative balance in etiopathogenesis of vitiligo

Laura Nowowiejska1, Anna Niezgoda, Aleksandra Grzanka, Rafał Czajkowski, Czanita Cieścińska, Alina Woźniak, Karolina Szewczyk-Golec
Forum Dermatologicum 2018;4(2):63-69.

Abstract

Oxidative stress plays an important role in the etiopathogenesis of acquired vitiligo. In patients with this disorder, impaied performance of the antioxidant system leads to the accumulation of reactive oxygen species in their skin. Under physiological conditions, they play the role of mediators and regulators of many cellular processes. Their excess, however, leads to the destruction of structural and functional elements of dye cells. Previous studies clearly indicate the share of free radicals in the progression of lesions. The use of antioxidant defense elements, including antioxidants, may prove to be an important element of effective therapy of this disease.

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. Passeron T, Ortonne JP. Physiopathology and genetics of vitiligo. J Autoimmun. 2005; 25 Suppl: 63–68.
  2. Krüger C, Schallreuter KU. A review of the worldwide prevalence of vitiligo in children/adolescents and adults. Int J Dermatol. 2012; 51(10): 1206–1212.
  3. Wolff K, Goldsmith LA, Katz SI, Gilchrest BA, Paller AS, Leffell DJ. Fitzpatrick’s Dermatology in General Medicine. Mc Graw Hill, United States of America 2008: 616–622.
  4. Burns T, Breathnach S, Cox N, Griffiths C. Rook’s Textbook of Dermatology, 7th edn, Vol. II. Blackwell Science, Oxford 2004: 52–57.
  5. Yaghoobi R, Omidian M, Bagheran N. Vitiligo: A review of the published work. The Journal of Dermatology. 2011; 38(5): 419–431.
  6. Alikhan A, Felsten LM, Daly M, et al. Vitiligo: a comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J Am Acad Dermatol. 2011; 65(3): 473–491.
  7. Czajkowski R, Wankiewicz A, Uchańska G, et al. Bielactwo nabyte – patogeneza i postępowanie. Twój Mag Med. 2004; 9: 29–35.
  8. Woźniak W, Jaworek AK. Bielactwo nabyte. Dermatolo Estet. 2009; 3: 189–194.
  9. Yamamoto Y, Tanioka M, Hayashino Y, et al. Application of a two-question screening instrument to detect depressive symptoms in patients with vitiligo: a pilot study. J Am Acad Dermatol. 2011; 64(5): e69–e70.
  10. Bilgiç Ö, Bilgiç A, Akiş HK, et al. Depression, anxiety and health-related quality of life in children and adolescents with vitiligo. Clin Exp Dermatol. 2011; 36(4): 360–365.
  11. Krüger C, Schallreuter KU. Stigmatisation, Avoidance Behaviour and Difficulties in Coping are Common Among Adult Patients with Vitiligo. Acta Derm Venereol. 2015; 95(5): 553–558.
  12. Misterska, M.; Szulczyńska-Gabor, J.; Zaba, R. Aetiopathogenesis, clinical picture and treatment of vitiligo, Postępy Dermatologii i Alergologii. 2009; 26(4): 212–22.
  13. Zegarska B, Kaczmarek-Skamira E, Czjkowski R. Możliwości kosmetyczne korekcji plam bielaczych. Dermato Klin. 2008; 10(1): 41–44.
  14. Ezzedine K, Lim HW, Suzuki T, et al. Vitiligo Global Issue Consensus Conference Panelists. Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res. 2012; 25(3): 1–13.
  15. Kakourou T, Kanaka-Gantenbein C, Papadopoulou A, et al. Increased prevalence of chronic autoimmune (Hashimoto's) thyroiditis in children and adolescents with vitiligo. J Am Acad Dermatol. 2005; 53(2): 220–223.
  16. Alkhateeb A, Fain PR, Thody A, et al. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res. 2003; 16(3): 208–214.
  17. Mason CP, Gawkrodger DJ. Vitiligo presentation in adults. Clin Exp Dermatol. 2005; 30(4): 344–345.
  18. Alikhan A, Felsten LM, Daly M, et al. Vitiligo: a comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J Am Acad Dermatol. 2011; 65(3): 473–491.
  19. Kemp EH, Emhemad S, Akhtar S, et al. Autoantibodies against tyrosine hydroxylase in patients with non-segmental (generalised) vitiligo. Exp Dermatol. 2011; 20(1): 35–40.
  20. Laddha NC, Dwivedi M, Mansuri MS, et al. Vitiligo: interplay between oxidative stress and immune system. Exp Dermatol. 2013; 22(4): 245–250.
  21. Lili Y, Yi W, Ji Y, et al. Global activation of CD8+ cytotoxic T lymphocytes correlates with an impairment in regulatory T cells in patients with generalized vitiligo. PLoS One. 2012; 7(5): e37513.
  22. Klarquist J, Denman CJ, Hernandez C, et al. Reduced skin homing by functional Treg in vitiligo. Pigment Cell Melanoma Res. 2010; 23(2): 276–286.
  23. Ben Ahmed M, Zaraa I, Rekik R, et al. Functional defects of peripheral regulatory T lymphocytes in patients with progressive vitiligo. Pigment Cell Melanoma Res. 2012; 25(1): 99–109.
  24. Abdallah M, Saad A. Evaluation of circulating CD4+CD25highFoxP3+T lymphocytes in active non-segmental vitiligo. J Pan-Arab League Dermatol. 2009; 20: 117–125.
  25. Kotobuki Y, Tanemura A, Yang L, et al. Dysregulation of melanocyte function by Th17-related cytokines: significance of Th17 cell infiltration in autoimmune vitiligo vulgaris. Pigment Cell Melanoma Res. 2012; 25(2): 219–230.
  26. Wang CQ, Cruz-Inigo AE, et al. Fuentes- Duculan J. , 1) Th17 cells and activated dendritic cells are increased in vitiligo lesions, PLoS ONE. 2011; 6: e18907.
  27. Grimes PE, Morris R, Avaniss-Aghajani E, et al. Topical tacrolimus therapy for vitiligo: therapeutic responses and skin messenger RNA expression of proinflammatory cytokines. J Am Acad Dermatol. 2004; 51(1): 52–61.
  28. Huppert J, Closhen D, Croxford A, et al. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J. 2010; 24(4): 1023–1034.
  29. Taher ZA, Lauzon G, Maguiness S, et al. Analysis of interleukin-10 levels in lesions of vitiligo following treatment with topical tacrolimus. Br J Dermatol. 2009; 161(3): 654–659.
  30. Spritz RA. Recent progress in the genetics of generalized vitiligo. J Genet Genomics. 2011; 38(7): 271–278.
  31. Czajkowski R, Męcińska-Jundziłł K. Current aspects of vitiligo genetics. Postepy Dermatol Alergol. 2014; 31(4): 247–255.
  32. Nath SK, Majumder PP, Nordlund JJ. Genetic epidemiology of vitiligo: multilocus recessivity cross-validated. Am J Hum Genet. 1994; 55(5): 981–990.
  33. Bhatia PS, Mohan L, Pandey ON, et al. Genetic nature of vitiligo. J Dermatol Sci. 1992; 4(3): 180–184.
  34. Zhang XJ, Chen JJ, Liu JB. The genetic concept of vitiligo. Journal of Dermatological Science. 2005; 39(3): 137–146.
  35. Njoo M, Westerhof W. Vitiligo. American Journal of Clinical Dermatology. 2001; 2(3): 167–181.
  36. Malhotra N, Dytoc M. The pathogenesis of vitiligo. J Cutan Med Surg. 2013; 17(3): 153–172.
  37. Birlea SA, Ahmad FJ, Uddin RM, et al. Association of generalized vitiligo with MHC class II loci in patients from the Indian subcontinent. J Invest Dermatol. 2013; 133(5): 1369–1372.
  38. Jin Y, Birlea SA, Fain PR, et al. Genome-wide analysis identifies a quantitative trait locus in the MHC class II region associated with generalized vitiligo age of onset. J Invest Dermatol. 2011; 131(6): 1308–1312.
  39. Singh A, Sharma P, Kar HK, et al. Indian Genome Variation Consortium. HLA alleles and amino-acid signatures of the peptide-binding pockets of HLA molecules in vitiligo. J Invest Dermatol. 2012; 132(1): 124–134.
  40. Birlea SA, Jin Y, Bennett DC, et al. Comprehensive association analysis of candidate genes for generalized vitiligo supports XBPI,F0XP3, and TSLP. J Invest Dermatol. 2011(81): 31–37.
  41. Zhao M, Gao F, Wu X, et al. Abnormal DNA methylation in peripheral blood mononuclear cells from patients with vitiligo. Br J Dermatol. 2010; 163(4): 736–742.
  42. Imran M, Laddha NC, Dwivedi M, et al. Interleukin-4 genetic variants correlate with its transcript and protein levels in patients with vitiligo. British Journal of Dermatology. 2012; 167(2): 314–323.
  43. Laddha NC, Dwivedi M, Begum R. Increased Tumor Necrosis Factor (TNF)-α and its promoter polymorphisms correlate with disease progression and higher susceptibility towards vitiligo. PLoS One. 2012; 7(12): e52298.
  44. Philips MA, Kingo K, Karelson M, et al. Promoter polymorphism -119C/G in MYG1 (C12orf10) gene is related to vitiligo susceptibility and Arg4Gln affects mitochondrial entrance of Myg1. BMC Medical Genetics. 2010; 11(1).
  45. Morrone A, Picardo M, de Luca G, et al. Gatecholamines and vitiligo. igment Gell Res. 1992(5): 65–69.
  46. Al'Abadie MS, Senior HJ, Bleehen SS, et al. Neuropeptide and neuronal marker studies in vitiligo. Br J Dermatol. 1994; 131(2): 160–165.
  47. Lazarova R, Hristakieva E, Lazarov N, et al. Vitiligo-related neuropeptides in nerve fibers of the skin. Arch Physiol Biochem. 2000; 108(3): 262–267.
  48. Liu PY, Bondesson L, Löntz W, et al. The occurrence of cutaneous nerve endings and neuropeptides in vitiligo vulgaris: a case-control study. Arch Dermatol Res. 1996; 288(11): 670–675.
  49. David A. The neurosensory system controls keratinocyte release of growth and survival factor nerve growth factor. J Invest Dermatol 2001. ; 17(1025).
  50. Gauthier Y, Cario-Andre M, Lepreux S, et al. Melanocyte detachment after skin friction in non lesional skin of patients with generalized vitiligo. Br J Dermatol. 2003; 148(1): 95–101.
  51. Yoshimura T, Matsuyama W, Kamohara H. Discoidin domain receptor 1: a new class of receptor regulating leukocyte-collagen interaction. Immunol Res. 2005; 31(3): 219–230.
  52. Silva de Castro CC, do Nascimento LM, Walker G, et al. Genetic variants of the DDR1 gene are associated with vitiligo in two independent Brazilian population samples. J Invest Dermatol. 2010; 130(7): 1813–1818.
  53. Kulbacka J, Saczko J, Chwiłkowska A. Stres oksydacyjny w procesach uszkodzenia komórek. Akademia Medyczna we Wrocławiu, Katedra i Zakład Biochemii Lekarski .
  54. Dell'Anna ML, Ottaviani M, Bellei B, et al. Membrane lipid defects are responsible for the generation of reactive oxygen species in peripheral blood mononuclear cells from vitiligo patients. J Cell Physiol. 2010; 223(1): 187–193.
  55. Schallreuter KU, Wood JM, Pittelkow MR, et al. Regulation of melanin biosynthesis in the human epidermis by tetrahydrobiopterin. Science. 1994; 263(5152): 1444–1446.
  56. Hasse S, Gibbons NCJ, Rokos H, et al. Perturbed 6-tetrahydrobiopterin recycling via decreased dihydropteridine reductase in vitiligo: more evidence for H2O2 stress. J Invest Dermatol. 2004; 122(2): 307–313.
  57. Maresca M, Roccella M, Roccella F, et al. Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J Invest Dermatol. 1997(109): 310–313.
  58. Schallreuter KU, Rubsam K, Gibbons NC, et al. Methionine sulfoxide reductases A and B are deactivated by hydrogen peroxide (H2O2) in the epidermis of patients with vitiligo. J Invest Dermatol. 2008(128): 808–815.
  59. Schallreuter KU, Wood JM, Berger J. Low catalase levels in the epidermis of patients with vitiligo. J Invest Dermatol. 1991; 97(6): 1081–1085.
  60. Dammak I, Boudaya S, Ben Abdallah F, et al. Antioxidant enzymes and lipid peroxidation at the tissue level in patients with stable and active vitiligo. Int J Dermatol. 2009; 48(5): 476–480.
  61. Sravani PV, Babu NK, Gopal KVT, et al. Determination of oxidative stress in vitiligo by measuring superoxide dismutase and catalase levels in vitiliginous and non-vitiliginous skin. Indian J Dermatol Venereol Leprol. 2009; 75(3): 268–271.
  62. Ines D, Sonia B, Riadh BM, et al. A comparative study of oxidant-antioxidant status in stable and active vitiligo patients. Arch Dermatol Res. 2006; 298(4): 147–152.
  63. Agrawal D, Shajil EM, Marfatia YS, et al. Study on the antioxidant status of vitiligo patients of different age groups in Baroda. Pigment Cell Res. 2004; 17(3): 289–294.
  64. Jain A, Mal J, Mehndiratta V, et al. Study of oxidative stress in vitiligo. Indian J Clin Biochem. 2011; 26(1): 78–81.
  65. Hazneci E, Karabulut AB, Oztürk C, et al. A comparative study of superoxide dismutase, catalase, and glutathione peroxidase activities and nitrate levels in vitiligo patients. Int J Dermatol. 2005; 44(8): 636–640.
  66. Yildirim M, Baysal V, Inaloz HS, et al. The role of oxidants and antioxidants in generalized vitiligo at tissue level. J Eur Acad Dermatol Venereol. 2004; 18(6): 683–686.
  67. Shajil EM, Begum R. Antioxidant status of segmental and non-segmental vitiligo. Pigment Cell Res. 2006; 19(2): 179–180.
  68. Khan R, Satyam A, Gupta S, et al. Circulatory levels of antioxidants and lipid peroxidation in Indian patients with generalized and localized vitiligo. Arch Dermatol Res. 2009; 301(10): 731–737.
  69. Picardo M, Passi S, Morrone A, et al. Antioxidant status in the blood of patients with active vitiligo. Pigment Cell Res. 1994; 7(2): 110–115.
  70. Passi S, Grandinetti M, Maggio F, et al. Epidermal oxidative stress in vitiligo. Pigment Cell Res. 1998; 11(2): 81–85.
  71. Ozturk IC, Batcioglu K, Karatas F, et al. Comparison of plasma malondialdehyde, glutathione, glutathione peroxidase, hydroxyproline and selenium levels in patients with vitiligo and healthy controls. Indian J Dermatol. 2008; 53(3): 106–110.
  72. Jalel A, Hamdaoui MH. Study of total antioxidant status and glutathione peroxidase activity in Tunisian vitiligo patients. Indian J Dermatol. 2009; 54(1): 13–16.
  73. Beazley WD, Gaze D, Panske A, et al. Serum selenium levels and blood glutathione peroxidase activities in vitiligo. Br J Dermatol. 1999; 141(2): 301–303.
  74. Dell'Anna ML, Mastrofrancesco A, Sala R, et al. Antioxidants and narrow band-UVB in the treatment of vitiligo: a double-blind placebo controlled trial. Clin Exp Dermatol. 2007; 32(6): 631–636.
  75. Kostović K, Pastar Z, Pasić A, et al. Treatment of vitiligo with narrow-band UVB and topical gel containing catalase and superoxide dismutase. Acta Dermatovenerol Croat. 2007; 15(1): 10–14.
  76. Soliman M, Samy NA, Abo Eittah M, et al. Comparative study between excimer light and topical antioxidant versus excimer light alone for treatment of vitiligo. J Cosmet Laser Ther. 2016; 18(1): 7–11.
  77. Colucci R, Dragoni F, Conti R, et al. Evaluation of an oral supplement containing Phyllanthus emblica fruit extracts, vitamin E, and carotenoids in vitiligo treatment. Dermatol Ther. 2015; 28(1): 17–21.
  78. Jayanth DP, Pai BS, Shenoi SD, et al. Efficacy of antioxidants as an adjunct to photochemotherapy in vitiligo: a case study of 30 patients. Indian J Dermatol Venereol Leprol. 2002; 68(4): 202–205.
  79. Akyol M, Celik VK, Ozcelik S, et al. The effects of vitamin E on the skin lipid peroxidation and the clinical improvement in vitiligo patients treated with PUVA. Eur J Dermatol. 2002; 12(1): 24–26.
  80. Popko M, Kacalak-Rzepka A, Bielecka-Grzela S, et al. [Vitiligo as an aesthetic problem. Noninvasive therapeutic methods in vitiligo]. Ann Acad Med Stetin. 2011; 57(3): 23–27.
  81. Yalçin B, Sahin S, Bükülmez G, et al. Experience with calcipotriol as adjunctive treatment for vitiligo in patients who do not respond to PUVA alone: a preliminary study. J Am Acad Dermatol. 2001; 44(4): 634–637.
  82. Parsad D, Pandhi R, Juneja A. Effectiveness of oral Ginkgo biloba in treating limited, slowly spreading vitiligo. Clin Exp Dermatol. 2003; 28(3): 285–287.
  83. Krzyżyńska-Malinowska E, Gerard D, Placek F, et al. Aktywność katalazy i peroksydazy glutationowej u pacjentów z bielactwem nabytym. Dermatol Estetyczna. 2005; 7(1): 5–9.