Vol 10, No 4 (2024)
Review paper
Published online: 2024-12-05

open access

Page views 345
Article views/downloads 170
Get Citation

Connect on Social Media

Connect on Social Media

Metabolic syndrome and associated comorbidities in alopecia

Agnieszka Leszyńska1, Janusz Kubasik1, Paweł Głuszak2, Dominika Kozłowska1, Julia Linke1, Maria Wawrzyniak1, Magdalena Jałowska2
Forum Dermatologicum 2024;10(4):120-128.

Abstract

Alopecia, a prevalent condition characterized by hair loss, bears a significant psychological impact on affected individuals. The condition can be classified into two primary categories: scarring (cicatricial) and non-scarring forms. Alopecia is frequently associated with various comorbidities, particularly autoimmune disorders. This review critically examines the existing literature to elucidate the potential relationship between different types of alopecia and metabolic syndrome (MetS), along with MetS-associated comorbidities. MetS is defined by a cluster of conditions, including hypertension, hyperglycaemia, abdominal obesity, and dyslipidaemia, which collectively heighten the risk for cardiovascular diseases (CVD) and diabetes. Furthermore, the shared risk factors, encompassing lifestyle habits and genetic predispositions, suggest a possible bidirectional relationship between these conditions. This underscores the importance of adopting integrated treatment approaches to address the complex interactions between alopecia and MetS. The review highlights the necessity for more comprehensive and diverse cohort studies to enhance our understanding of the interplay between alopecia and MetS.

Article available in PDF format

View PDF Download PDF file

References

  1. Darwin E, Hirt PA, Fertig R, et al. Alopecia areata: review of epidemiology, clinical features, pathogenesis, and new treatment options. Int J Trichology. 2018; 10(2): 51–60.
  2. Toussi A, Barton VR, Le ST, et al. Psychosocial and psychiatric comorbidities and health-related quality of life in alopecia areata: a systematic review. J Am Acad Dermatol. 2021; 85(1): 162–175.
  3. Botega AA, Amorim CV, Teixeira F, et al. Scarring versus non-scarring alopecia: an interobserver histopathological reproducibility study. Skin Appendage Disord. 2023; 9(1): 34–41.
  4. Trüeb RM. Molecular mechanisms of androgenetic alopecia. Exp Gerontol. 2002; 37(8–9): 981–990.
  5. Śliwa K, Synia D, Placek W, et al. The diagnosis and treatment of androgenetic alopecia: a review of the most current management. Forum Derm. 2023; 9(3): 99–111.
  6. Morita W, Dakin SG, Snelling SJB, et al. Cytokines in tendon disease: a systematic review. Bone Joint Res. 2017; 6(12): 656–664.
  7. Żeberkiewicz M, Rudnicka L, Malejczyk J. Immunology of alopecia areata. Cent Eur J Immunol. 2020; 45(3): 325–333.
  8. Dobrowolski P, Prejbisz A, Kuryłowicz A, et al. Metabolic syndrome — a new definition and management guidelines. Arterial Hypertens. 2022; 26(3): 99–121.
  9. Fahed G, Aoun L, Bou Zerdan M, et al. Metabolic syndrome: updates on pathophysiology and management in 2021. Int J Mol Sci. 2022; 23(2).
  10. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018; 20(2): 12.
  11. Lolli F, Pallotti F, Rossi A, et al. Androgenetic alopecia: a review. Endocrine. 2017; 57(1): 9–17.
  12. Norwood OT. Incidence of female androgenetic alopecia (female pattern alopecia). Dermatol Surg. 2001; 27(1): 53–54.
  13. Ho CY, Wu CY, Chen JYF, et al. Clinical and genetic aspects of alopecia areata: a cutting edge review. Genes (Basel). 2023; 14(7): 1362.
  14. Lie C, Liew CF, Oon HH. Alopecia and the metabolic syndrome. Clin Dermatol. 2018; 36(1): 54–61.
  15. Ramos PM, Miot HA. Female pattern hair loss: a clinical and pathophysiological review. An Bras Dermatol. 2015; 90(4): 529–543.
  16. Su X, Cheng Ye, Chang D. The important role of leptin in modulating the risk of dermatological diseases. Front Immunol. 2020; 11: 593564.
  17. Park PJ, Cho EG. Kojyl cinnamate ester derivatives increase adiponectin expression and stimulate adiponectin-induced hair growth factors in human dermal papilla cells. Int J Mol Sci. 2019; 20(8): 1859.
  18. Ter Horst R, van den Munckhof ICL, Schraa K, et al. Sex-Specific regulation of inflammation and metabolic syndrome in obesity. Arterioscler Thromb Vasc Biol. 2020; 40(7): 1787–1800.
  19. Prie BE, Iosif L, Tivig I, et al. Oxidative stress in androgenetic alopecia. J Med Life. 2016; 9(1): 79–83.
  20. Suzuki K, Inoue M, Cho O, et al. Scalp microbiome and sebum composition in japanese male individuals with and without androgenetic alopecia. Microorganisms. 2021; 9(10): 2132.
  21. Mahmud MdR, Akter S, Tamanna SK, et al. Impact of gut microbiome on skin health: gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes. 2022; 14(1): 2096995.
  22. Zhang J, Yao Z. Immune cell trafficking: a novel perspective on the gut-skin axis. Inflamm Regen. 2024; 44(1): 21.
  23. Dharam Kumar KC, Kishan Kumar YH, Neladimmanahally V. Association of androgenetic alopecia with metabolic syndrome: a case-control study on 100 patients in a tertiary care hospital in south india. Indian J Endocrinol Metab. 2018; 22(2): 196–199.
  24. Bakry OA, Shoeib MA, El Shafiee MK, et al. Androgenetic alopecia, metabolic syndrome, and insulin resistance: Is there any association? A case-control study. Indian Dermatol Online J. 2014; 5(3): 276–281.
  25. Gopinath H, Upadya GM. Metabolic syndrome in androgenic alopecia. Indian J Dermatol Venereol Leprol. 2016; 82(4): 404–408.
  26. Oiwoh SO, Akinboro AO, Olayemi O, et al. Androgenetic alopecia: traditional cardiovascular risk factors, metabolic syndrome, and component traits among nigerian adults. Niger J Clin Pract. 2023; 26(4): 463–469.
  27. Sheikh FZ, Butt G, Hafeez R, et al. Association of early-onset androgenetic alopecia and metabolic syndrome. J Coll Physicians Surg Pak. 2021; 31(2): 123–127.
  28. Chung HC, Choe SJ, Lee S, et al. Medical comorbidities and the onset of androgenetic alopecia: a population-based, case-control study. Ann Dermatol. 2018; 30(2): 251–252.
  29. Qiu Y, Zhou X, Fu S, et al. Systematic review and meta-analysis of the association between metabolic syndrome and androgenetic alopecia. Acta Derm Venereol. 2022; 102: adv00645.
  30. Arias-Santiago S, Gutiérrez-Salmerón MT, Castellote-Caballero L, et al. Androgenetic alopecia and cardiovascular risk factors in men and women: a comparative study. J Am Acad Dermatol. 2010; 63(3): 420–429.
  31. Hamed AM, Fatah MA, Shams GM. Androgenetic alopecia and metabolic syndrome: is alarin a missing link? J Clin Aesthet Dermatol. 2022; 15(7): 32–37.
  32. Mustafa AI, Abel Halim WA, Eman F, et al. Metabolic syndrome in androgenetic alopecia patients; Is serum regulated on activation, normal T-cell expressed and secreted the missing link? J Cosmet Dermatol. 2021; 20(7): 2270–2276.
  33. Elhabak DM, Abdel Halim WA. YKL-40 a sensitive biomarker for early androgenetic alopecia and early hidden metabolic syndrome. Int J Trichology. 2020; 12(2): 49–55.
  34. McKenzie PL, Maltenfort M, Bruckner AL, et al. Evaluation of the prevalence and incidence of pediatric alopecia areata using electronic health record data. JAMA Dermatol. 2022; 158(5): 547–551.
  35. Harries M, Macbeth AE, Holmes S, et al. The epidemiology of alopecia areata: a population-based cohort study in UK primary care. Br J Dermatol. 2022; 186(2): 257–265.
  36. Mirzoyev SA, Schrum AG, Davis MDP, et al. Lifetime incidence risk of alopecia areata estimated at 2.1% by Rochester Epidemiology Project, 1990-2009. J Invest Dermatol. 2014; 134(4): 1141–1142.
  37. Arousse A, Boussofara L, Mokni S, et al. Alopecia areata in Tunisia: epidemio-clinical aspects and comorbid conditions. a prospective study of 204 cases. Int J Dermatol. 2019; 58(7): 811–815.
  38. Zhou C, Li X, Wang C, et al. Alopecia areata: an update on etiopathogenesis, diagnosis, and management. Clin Rev Allergy Immunol. 2021; 61(3): 403–423.
  39. Wang X, Marr AK, Breitkopf T, et al. Hair follicle mesenchyme-associated PD-L1 regulates T-cell activation induced apoptosis: a potential mechanism of immune privilege. J Invest Dermatol. 2014; 134(3): 736–745.
  40. Ito T, Tokura Y. The role of cytokines and chemokines in the T-cell-mediated autoimmune process in alopecia areata. Exp Dermatol. 2014; 23(11): 787–791.
  41. Betz RC, Petukhova L, Ripke S, et al. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci. Nat Commun. 2015; 6(1): 5966.
  42. Chen CC, Li TC, Chang PC, et al. Association among cigarette smoking, metabolic syndrome, and its individual components: the metabolic syndrome study in Taiwan. Metabolism. 2008; 57(4): 544–548.
  43. Liang YY, Chen J, Peng M, et al. Association between sleep duration and metabolic syndrome: linear and nonlinear Mendelian randomization analyses. J Transl Med. 2023; 21(1): 90.
  44. Jurgens SM, Prieto S, Hayes JP. Inflammatory biomarkers link perceived stress with metabolic dysregulation. Brain Behav Immun Health. 2023; 34: 100696.
  45. Dai YX, Yeh FY, Shen YJ, et al. Cigarette smoking, alcohol consumption, and risk of alopecia areata: a population-based cohort study in taiwan. Am J Clin Dermatol. 2020; 21(6): 901–911.
  46. Seo HM, Kim TL, Kim JS. The risk of alopecia areata and other related autoimmune diseases in patients with sleep disorders: a Korean population-based retrospective cohort study. Sleep. 2018; 41(9).
  47. Ly S, Manjaly P, Kamal K, et al. Comorbid conditions associated with alopecia areata: a systematic review and meta-analysis. Am J Clin Dermatol. 2023; 24(6): 875–893.
  48. Abdollahimajd F, Niknezhad N, Bahreini N, et al. Metabolic syndrome in patients with alopecia areata: a case-control study. Dermatol Ther. 2021; 34(4): e14979.
  49. Singdia H, Bhargava P, Nijhawan S, et al. A study of correlation of alopecia areata and metabolic syndrome in northwest indian population: a case-control study. Int J Trichology. 2023; 15(2): 63–69.
  50. Nasimi M, Shakoei S, Abedini R, et al. A cross-sectional study of metabolic syndrome in patients with alopecia areata. Indian J Dermatol Venereol Leprol. 2021; 87(3): 427–429.
  51. Incel-Uysal P, Akdogan N, Alli N, et al. Assessment of metabolic profile and ischemia-modified albumin level in patients with alopecia areata: a case-control study. Indian J Dermatol. 2019; 64(1): 12–18.
  52. Karadag AS, Ertugrul DT, Bilgili SG, et al. Insulin resistance is increased in alopecia areata patients. Cutan Ocul Toxicol. 2013; 32(2): 102–106.
  53. Huang KP, Mullangi S, Guo Ye, et al. Autoimmune, atopic, and mental health comorbid conditions associated with alopecia areata in the United States. JAMA Dermatol. 2013; 149(7): 789–794.
  54. Conic RRZ, Chu S, Tamashunas NL, et al. Prevalence of cardiac and metabolic diseases among patients with alopecia areata. J Eur Acad Dermatol Venereol. 2021; 35(2): e128–e129.
  55. Andersen YMF, Nymand L, DeLozier AM, et al. Patient characteristics and disease burden of alopecia areata in the Danish Skin Cohort. BMJ Open. 2022; 12(2): e053137.
  56. Lee NRi, Kim BK, Yoon NaY, et al. Differences in comorbidity profiles between early-onset and late-onset alopecia areata patients: a retrospective study of 871 korean patients. Ann Dermatol. 2014; 26(6): 722–726.
  57. Conic RZ, Tamashunas NL, Damiani G, et al. Young Dermatologists Italian Network. Comorbidities in pediatric alopecia areata. J Eur Acad Dermatol Venereol. 2020; 34(12): 2898–2901.
  58. Seyrafi H, Akhiani M, Abbasi H, et al. Evaluation of the profile of alopecia areata and the prevalence of thyroid function test abnormalities and serum autoantibodies in Iranian patients. BMC Dermatol. 2005; 5: 11.
  59. Kasumagić-Halilović E, Prohić A, et al. Association between alopecia areata and atopy. Med Arh. 2008; 62(2): 82–84.
  60. Baars MP, Greebe RJ, Pop VJM. High prevalence of thyroid peroxidase antibodies in patients with alopecia areata. J Eur Acad Dermatol Venereol. 2013; 27(1): e137–e139.
  61. Lee S, Lee YB, Kim BJ, et al. Screening of thyroid function and autoantibodies in patients with alopecia areata: a systematic review and meta-analysis. J Am Acad Dermatol. 2019; 80(5): 1410–1413.e4.
  62. Sorrell J, Petukhova L, Reingold R, et al. Shedding light on alopecia areata in pediatrics: a retrospective analysis of comorbidities in children in the national alopecia areata registry. Pediatr Dermatol. 2017; 34(5): e271–e272.
  63. Fanti PA, Baraldi C, Misciali C, et al. Cicatricial alopecia. G Ital Dermatol Venereol. 2018; 153(2): 230–242.
  64. Kanti V, Röwert-Huber J, Vogt A, et al. Cicatricial alopecia. J Dtsch Dermatol Ges. 2018; 16(4): 435–461.
  65. Kerkemeyer KLS, Eisman S, Bhoyrul B, et al. Frontal fibrosing alopecia. Clin Dermatol. 2021; 39(2): 183–193.
  66. Akarsu S, Ozbagcivan O, Semiz F, et al. High prevalence of metabolic syndrome in patients with discoid lupus erythematosus: a cross-sectional, case-control study. J Immunol Res. 2017; 2017: 3972706.
  67. Nasimi M, Lajevardi va, Mahmoudi H, et al. Metabolic syndrome in patients with oral lichen planus and lichen planopilaris: a cross-sectional study. Iran J Dermatol. 2021; 24(3): 186–192.
  68. Pelet Del Toro N, Strunk A, Garg A, et al. Prevalence and treatment patterns in patients with lichen planopilaris. JAMA Dermatol. 2024; 160(8): 865–868.
  69. Aguh C, McMichael A. Central centrifugal cicatricial alopecia. JAMA Dermatol. 2020; 156(9): 1036.
  70. Ayandibu G, Bergfeld W. Retrospective cohort study to assess the prevalence of different factors of metabolic syndrome in central centrifugal cicatricial alopecia patients. J Am Acad Dermatol. 2018; 79(3): AB246.
  71. Ali S, Collins M, Taylor SC, et al. Type 2 diabetes mellitus and central centrifugal cicatricial alopecia severity. J Am Acad Dermatol. 2022; 87(6): 1418–1419.
  72. Roche FC, Harris J, Ogunleye T, et al. Association of type 2 diabetes with central centrifugal cicatricial alopecia: a follow-up study. J Am Acad Dermatol. 2022; 86(3): 661–662.
  73. Colleen R. Hypertension and cicatricial hair loss: defining high value symptom clusters within reproductive aging. J Dermatol Res Ther. 2021; 7(1).
  74. Arias-Santiago S, Buendía-Eisman A, Aneiros-Fernández J, et al. Lipid levels in patients with lichen planus: a case-control study. J Eur Acad Dermatol Venereol. 2011; 25(12): 1398–1401.
  75. Conic RRZ, Piliang M, Bergfeld W, et al. Association of lichen planopilaris with dyslipidemia. JAMA Dermatol. 2018; 154(9): 1088–1089.
  76. Whiting DA. Cicatricial alopecia: clinico-pathological findings and treatment. Clin Dermatol. 2001; 19(2): 211–225.
  77. Tan E, Martinka M, Ball N, et al. Primary cicatricial alopecias: clinicopathology of 112 cases. J Am Acad Dermatol. 2004; 50(1): 25–32.
  78. Powell JJ, Dawber RP, Gatter K. Folliculitis decalvans including tufted folliculitis: clinical, histological and therapeutic findings. Br J Dermatol. 1999; 140(2): 328–333.
  79. Vañó-Galván S, Molina-Ruiz AM, Fernández-Crehuet P, et al. Folliculitis decalvans: a multicentre review of 82 patients. J Eur Acad Dermatol Venereol. 2015; 29(9): 1750–1757.
  80. Miteva M. Folliculitis decalvans. In: Miteva M. ed. Hair pathology with trichoscopic correlations 1st edition. CRC Press 2021: 5.
  81. Chiarini C, Torchia D, Bianchi B, et al. Immunopathogenesis of folliculitis decalvans: clues in early lesions. Am J Clin Pathol. 2008; 130(4): 526–534.
  82. Matard B, Donay JL, Resche-Rigon M, et al. Folliculitis decalvans is characterized by a persistent, abnormal subepidermal microbiota. Exp Dermatol. 2020; 29(3): 295–298.
  83. Lyakhovitsky A, Segal Oz, Galili E, et al. Diagnostic delay, comorbid hidradenitis suppurativa and the prognostic value of bacterial culture in folliculitis decalvans: a cohort study. J Dtsch Dermatol Ges. 2023; 21(12): 1469–1477.
  84. Miguel-Gómez L, Rodrigues-Barata AR, Molina-Ruiz A, et al. Folliculitis decalvans: effectiveness of therapies and prognostic factors in a multicenter series of 60 patients with long-term follow-up. J Am Acad Dermatol. 2018; 79(5): 878–883.
  85. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002; 287(3): 356–359.
  86. Moore JX, Chaudhary N, Akinyemiju T. Metabolic syndrome prevalence by race/ethnicity and sex in the United States, national health and nutrition examination survey, 1988–2012. Prev Chronic Dis. 2017; 14: E24.
  87. Edwardson CL, Gorely T, Davies MJ, et al. Association of sedentary behaviour with metabolic syndrome: a meta-analysis. PLoS One. 2012; 7(4): e34916.
  88. Sun K, Liu J, Ning G. Active smoking and risk of metabolic syndrome: a meta-analysis of prospective studies. PLoS One. 2012; 7(10): e47791.
  89. Kim A. Dysbiosis: a review highlighting obesity and inflammatory bowel disease. J Clin Gastroenterol. 2015; 49 Suppl 1: S20–S24.
  90. Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci. 2017; 74(16): 2959–2977.
  91. Liu D, Ahmet A, Ward L, et al. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol. 2013; 9(1): 30.