open access

Vol 81, No 3 (2022)
Original article
Submitted: 2021-03-18
Accepted: 2021-05-13
Published online: 2021-06-14
Get Citation

Ultrastructural features on the oral cavity floor (tongue, sublingual caruncle) of the Egyptian water buffalo (Bubalus bubalis): gross, histology and scanning electron microscope

F. A. Farrag1, S. F. Mahmoud2, M. A. Kassab3, A. Hassan1, F. Abdelmohdy3, M. Shukry4, M. M.A. Abumandour5, M. Fayed1
·
Pubmed: 34184751
·
Folia Morphol 2022;81(3):650-662.
Affiliations
  1. Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
  2. Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
  3. Department of Cytology and Histology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
  4. Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
  5. Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt

open access

Vol 81, No 3 (2022)
ORIGINAL ARTICLES
Submitted: 2021-03-18
Accepted: 2021-05-13
Published online: 2021-06-14

Abstract

Background: The present work was focused on the evaluation of morphological characteristics of the lingual caruncles and tongue with its papillae of Egyptian water buffalo (Bubalus bubalis) using gross examination, light and scanning electron microscopy.
Materials and methods: The ventral surface of the sublingual caruncle carried a small opening of the duct of both monostomatic and mandibular salivary gland. The lingual mucosa of dorsal, lateral border and, to some extent, of ventral surface of apex had lingual papillae (filiform, fungiform), while the lingual mucosa of the lingual body especially at torus linguae had conical papillae, but circumvallate papillae observed at the caudal part of body and root. The dorsal surface of the apex and body carried numerous long, thread-like, with blunt apex, caudally directed filiform papillae that covered with keratinised scales without secondary papillae.
Results: The degree of keratinisation classified filiform papillae into rostral part of high keratinisation and caudal of less keratinisation. Conical papillary surface carried exfoliated epithelium with longitudinal groove on its rostral surface and carried secondary papillae. Fungiform papillae were scattered among filiform papillae on the dorsal and ventral surface of the apex and its convex surface had exfoliated keratinised epithelium. Circumvallate papillae were surrounded by circular deep groove bordered by vallum that carried small secondary papillae that ended into the primary groove. Taste buds of circumvallate papillae opened in the lateral lining epithelium facing the groove.
Conclusions: Von Ebner’s glands were observed in computed tomography under papillae especially toward the groove and their ducts open into the base of the groove.

Abstract

Background: The present work was focused on the evaluation of morphological characteristics of the lingual caruncles and tongue with its papillae of Egyptian water buffalo (Bubalus bubalis) using gross examination, light and scanning electron microscopy.
Materials and methods: The ventral surface of the sublingual caruncle carried a small opening of the duct of both monostomatic and mandibular salivary gland. The lingual mucosa of dorsal, lateral border and, to some extent, of ventral surface of apex had lingual papillae (filiform, fungiform), while the lingual mucosa of the lingual body especially at torus linguae had conical papillae, but circumvallate papillae observed at the caudal part of body and root. The dorsal surface of the apex and body carried numerous long, thread-like, with blunt apex, caudally directed filiform papillae that covered with keratinised scales without secondary papillae.
Results: The degree of keratinisation classified filiform papillae into rostral part of high keratinisation and caudal of less keratinisation. Conical papillary surface carried exfoliated epithelium with longitudinal groove on its rostral surface and carried secondary papillae. Fungiform papillae were scattered among filiform papillae on the dorsal and ventral surface of the apex and its convex surface had exfoliated keratinised epithelium. Circumvallate papillae were surrounded by circular deep groove bordered by vallum that carried small secondary papillae that ended into the primary groove. Taste buds of circumvallate papillae opened in the lateral lining epithelium facing the groove.
Conclusions: Von Ebner’s glands were observed in computed tomography under papillae especially toward the groove and their ducts open into the base of the groove.

Get Citation

Keywords

lingual caruncles, tongue, lingual papillae, Egyptian water buffalo, histology, scanning electron microscope (SEM)

About this article
Title

Ultrastructural features on the oral cavity floor (tongue, sublingual caruncle) of the Egyptian water buffalo (Bubalus bubalis): gross, histology and scanning electron microscope

Journal

Folia Morphologica

Issue

Vol 81, No 3 (2022)

Article type

Original article

Pages

650-662

Published online

2021-06-14

Page views

4419

Article views/downloads

1399

DOI

10.5603/FM.a2021.0061

Pubmed

34184751

Bibliographic record

Folia Morphol 2022;81(3):650-662.

Keywords

lingual caruncles
tongue
lingual papillae
Egyptian water buffalo
histology
scanning electron microscope (SEM)

Authors

F. A. Farrag
S. F. Mahmoud
M. A. Kassab
A. Hassan
F. Abdelmohdy
M. Shukry
M. M.A. Abumandour
M. Fayed

References (55)
  1. Abd-Elnaeim MMM, Zayed AE, Leiser R. Morphological characteristics of the tongue and its papillae in the donkey (Equus asinus): a light and scanning electron microscopical study. Ann Anat. 2002; 184(5): 473–480.
  2. Abumandour MMA. Surface ultrastructural (SEM) characteristics of oropharyngeal cavity of house sparrow (Passer domesticus). Anat Sci Int. 2018; 93(3): 384–393.
  3. Abumandour MMA. Morphological Comparison of the Filiform Papillae of New Zealand White Rabbits (Oryctolagus cuniculus) as Domestic Mammals and Egyptian Fruit Bat (Rousettus aegyptiacus) as Wild Mammals Using Scanning Electron Microscopic Specimens. Int J Morphol. 2014; 32(4): 1407–1417.
  4. Abumandour MMA, El-Bakary RMA. Anatomic reference for morphological and scanning electron microscopic studies of the New Zealand white rabbits tongue (Orycotolagus cuniculus) and their lingual adaptation for feeding habits. J Morphol Sci. 2013; 30(4): 1–12.
  5. Abumandour MMA, El-Bakary RMA. Morphological and scanning electron microscopic studies of the tongue of the Egyptian fruit bat (Rousettus aegyptiacus) and their lingual adaptation for its feeding habits. Vet Res Commun. 2013; 37(3): 229–238.
  6. Adnyane IKM, Zuki AB, Noordin MM, et al. Morphological study of the lingual papillae in the barking deer, Muntiacus muntjak. Anat Histol Embryol. 2011; 40(1): 73–77.
  7. Agungpriyono S, Yamada J, Kitamura N, et al. Morphology of the dorsal lingual papillae in the lesser mouse deer, Tragulus javanicus. J Anat. 1995; 187 ( Pt 3): 635–640.
  8. Asami Y, Asami T, and Ko. Light microscopic and scanning electron microscopic studies on the lingual papillae and stereo structure of their connective tissue cores in cattle. Shigaku (Odontology). 1995; 82: 1223–1244.
  9. Atoji Y, Yamamoto Y, Suzuki Y. Morphology of the tongue of a male Formosan serow (Capricornis crispus swinhoei). Anat Histol Embryol. 1998; 27(1): 17–19.
  10. Bancroft JD, Gamble M. Theory and practice of histological techniques. Elsevier Health Sciences, China 2008.
  11. Bancroft JD, Cook H, Turner D. Manual of Histological Techniques and Their Diagnostic Application, 2e. 1996.
  12. Braekevelt CR. Fine structure of the choriocapillaris, Bruch's membrane and retinal epithelium of the cow. Anat Histol Embryol. 1986; 15(3): 205–214.
  13. Chamorro CA, de Paz P, Sandoval J, et al. Comparative scanning electron-microscopic study of the lingual papillae in two species of domestic mammals (Equus caballus and Bos taurus). 1. Gustatory Papillae. Acta Anat (Basel). 1986; 125(2): 83–87.
  14. Chamorro CA, Sandoval J, Fernandez JG, et al. Estudio comparado de las Papilas linguales del Gato (Felis catus) y del Conejo (Oryctolagus cuniculus) mediante el Microscopio electrónico de barrido. Anat Histol Embryol. 2007; 16(1): 37–47.
  15. Ding Y, Yu S, Shao B. Anatomical and histological characteristic of the tongue and tongue mucosa linguae in the cattle-yak (Bos taurus × Bos grunniens). Front Biol. 2016; 11(2): 141–148.
  16. Dyce KM, Sack WO, Wensing CJG. Text book of Veterinary anatomy. W.B. Saunders Company, Philadelphia, London and Toronto 2010.
  17. Eerdunchaolu A, Takehana K, Yamamoto E, et al. Characteristics of dorsal lingual papillae of the Bactrian camel (Camelus bactrianus). Anat Histol Embryol. 2001; 30(3): 147–151.
  18. El-Bakary NER, Abumandour MMA. Morphological studies of the tongue of the egyptian water buffalo (bubalus bubalis) and their lingual papillae adaptation for its feeding habits. Anat Histol Embryol. 2017; 46(5): 474–486.
  19. El-Mansi A, Al-Kahtani MA, Abumandour M. Comparative phenotypic and structural adaptations of tongue and gastrointestinal tract in two bats having different feeding habits captured from Saudi Arabia: Egyptian fruit bat (Rousettus aegyptiacus) and Egyptian tomb bat (Taphozous perforatus). Zoologischer Anzeiger. 2019; 281: 24–38.
  20. Emura S, El Bakary NER. Morphology of the lingual papillae of Egyptian buffalo (Bubalus bubalis). Okajimas Folia Anat Jpn. 2014; 91(1): 13–17.
  21. Emura S, Hayakawa D, Chen H, et al. Morphology of the lingual papillae in the tiger. Okajimas Folia Anat Jpn. 2004; 81(2-3): 39–43.
  22. Emura S, Okumura T, Chen H, et al. Morphology of the lingual papillae in the raccoon dog and fox. Okajimas Folia Anat Jpn. 2006; 83(3): 73–76.
  23. Erdoğan S, Pérez W. Anatomical and scanning electron microscopic studies of the tongue and lingual papillae in the chital deer (Axis axis,Erxleben 1777). Acta Zoologica. 2013; 95(4): 484–492.
  24. Erdoğan S, Pérez W. Anatomical and scanning electron microscopic characteristics of the tongue in the pampas deer (Cervidae: Ozotoceros bezoarticus, Linnaeus 1758). Microsc Res Tech. 2013; 76(10): 1025–1034.
  25. FAO, Breeds reported by Pakistan: Buffalo. Domestic Animal Diversity Information System, Food and Agriculture Organisation of the United Nations, Rome. 2013.
  26. Goodarzi N, Shah Hoseini T. Morphologic and osteometric analysis of the skull of markhoz goat (Iranian angora). Vet Med Int. 2014; 2014: 972682.
  27. Goździewska-Harłajczuk K, Klećkowska-Nawrot J, Janeczek M, et al. Morphology of the Lingual and Buccal Papillae in Alpaca (Vicugna pacos) - Light and Scanning Electron Microscopy. Anat Histol Embryol. 2015; 44(5): 345–360.
  28. Igbokwe CO. and Okolie C. Morphological study of the lingual papillae at different stages of growth (Prepubertal, Pubertal, Post Pubertal and Adult) of the West African dwarf goat (Capra. Hircus). Int J Morphol. 2009; 27(1): 145–150.
  29. Iwasaki Si, Miyata K, Kobayashi K. Comparative studies of the dorsal surface of the tongue in three mammalian species by scanning electron microscopy. Cells Tissues Organs. 2008; 128(2): 140–146.
  30. Jackowiak H, Godynicki S. The scanning electron microscopic study of lingual papillae in the silver fox (Vulpes vulpes fulva, Desmarest, 1820). Ann Anat. 2004; 186(2): 179–183.
  31. Kobayashi K, Kumakura M, Yoshimura K, et al. Comparative morphological study of the lingual papillae and their connective tissue cores of the koala. Anat Embryol (Berl). 2003; 206(4): 247–254.
  32. Kobayashi K, Jackowiak H, Frackowiak H, et al. Comparative morphological study on the tongue and lingual papillae of horses (Perissodactyla) and selected ruminantia (Artiodactyla). Ital J Anal Embryol. 2005; 110(2 9Suppl 1)): 55.
  33. Kocak-Harem M, Harem IS, Sari E, et al. Light and Scanning Electron Microscopic Study of the Dorsal Lingual Papillae of the Goitered Gazelle (Gazelle subgutturosa). J Animal Vet Advances. 2011; 10(15): 1906–1913.
  34. Kokubun H, Esper G, Franciolli A, et al. Estudo histológico e comparativo das papilas linguais dos cervídeos Mazama americana e Mazama gouzoubira por microscopia de luz e eletrônica de varredura. Pesq Vet Bras. 2012; 32(10): 1061–1066.
  35. Kumar P, Kumar S, Singh Y. Tongue papillae in goat: a scanning electron-microscopic study. Anat Histol Embryol. 1998; 27(6): 355–357.
  36. Kumar S, Bate LA. Scanning electron microscopy of the tongue papillae in the pig (Sus scrofa). Microsc Res Tech. 2004; 63(5): 253–258.
  37. Kurtul I, Atalgın SH. Scanning electron microscopic study on the structure of the lingual papillae of the Saanen goat. Small Ruminant Res. 2008; 80(1-3): 52–56.
  38. Maala CP. The Gross Anatomy of the Hard Palate and Palatine Printing in Cattle Ceferino P. Maala1*, DVM, MVSc, PhD; Rio John T. Ducusin", DVM, MAgr, PhD and Joseph A. Rizori', DVM. J Vet Med. 2007; 44(1): 1–7.
  39. Maala CP, Ferriol G. Gross anatomy, histology and palatine prints of the hard palate of the Philippine carabao (Bubalus bubalis L. Philippine Agricultural Scientist, Philippines 2002.
  40. Mahdy MAA, Abdalla KEH, Mohamed SA, et al. Morphological investigations on the lips and cheeks of the goat (Capra hircus): A scanning electron and light microscopic study. Microsc Res Tech. 2020; 83(9): 1095–1102.
  41. Mahmoud MMAE, Ahmed EZ, Rudolf L, et al. Morphological characteristics of the tongue and its papillae in the donkey (Equus asinus): a light and scanning electron microscopical study. Ann Anat Anat Anz. 2002; 184(5): 473–480.
  42. Masson P. Some histological methods: trichrome staining and their preliminary technique. J Tech Methods. 1929; 12: 75–90.
  43. Massoud D, Abumandour MMA. Descriptive studies on the tongue of two micro-mammals inhabiting the Egyptian fauna; the Nile grass rat (Arvicanthis niloticus) and the Egyptian long-eared hedgehog (Hemiechinus auritus). Microsc Res Tech. 2019; 82(9): 1584–1592.
  44. Nasr E. Surface morphological structure of the tongue of the hedgehog, Hemiechinusauritus (Insectivora: Erinaceidae). J Am Sci. 2012; 8(4): 580–588.
  45. Nasr E, Gamal A, and El. Light and scanning electron microscopic study of the dorsal lingual papillae of the rat Arvicanthis niloticus (Muridae, Rodentia). J Am Sci. 2012; 8(4): 619–627.
  46. Nomina AnatomicaVeterinaria N. International Committee on Veterinary Gross Anatomical Nomenclature and authorized by the general assembly of the world Association of veterinary Anatomist. Knoxville, 3rd Ed. Ghent. Published by the Editorial Committee Hanover (Germany), Ghent (Belgium), Columbia, MO (U.S.A.), Rio de Janeiro (Brazil). 2017.
  47. Qayyum MA, Fatani JA, Mohajir AM. Scanning electron microscopic study of the lingual papillae of the one humped camel, Camelus dromedarius. J Anat. 1988; 160: 21–26.
  48. Sari EK, Harem MK, Harem IS. Characteristics of dorsal lingual papillae of zavot cattle. J Animal Vet Advances. 2010; 9(1): 123–130.
  49. Scala G, Mirabella N, Pelagalli GV. [Morphofunctional study of the lingual papillae in cattle (Bos taurus)]. Anat Histol Embryol. 1995; 24(2): 101–105.
  50. Schumacher U, Duku M, Katoh M, et al. Histochemical similarities of mucins produced by Brunner's glands and pyloric glands: A comparative study. Anat Rec A Discov Mol Cell Evol Biol. 2004; 278(2): 540–550.
  51. Suvarna KS, Layton C, Bancroft JD. Bancroft's theory and practice of histological techniques. E-Book. Elsevier Health Sciences 2018.
  52. Suvarna SK, Layton C, Bancroft JD. Bancroft's Theory and Practice of Histological Techniques,Expert Consult: Online and Print,7: Bancroft's Theory and Practice of Histological Techniques. Elsevier, Churchill Livingstone 2013.
  53. Tabata S, Wada A, Kobayashi T, et al. Bovine circumvallate taste buds: taste cell structure and immunoreactivity to alpha-gustducin. Anat Rec A Discov Mol Cell Evol Biol. 2003; 271(1): 217–224.
  54. Tadjalli M, Pazhoomand R. Tongue papillae in lambs: a scanning electron microscopic study. Small Ruminant Research. 2004; 54(1-2): 157–164.
  55. Zheng J, Kobayashi K. Comparative morphological study on the lingual papillae and their connective tissue cores (CTC) in reeves' muntjac deer (Muntiacus reevesi). Ann Anat. 2006; 188(6): 555–564.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., Grupa Via Medica, Świętokrzyska 73, 80–180 Gdańsk, Poland

tel.: +48 58 320 94 94, faks: +48 58 320 94 60, e-mail: viamedica@viamedica.pl