open access

Vol 81, No 2 (2022)
Original article
Submitted: 2021-03-05
Accepted: 2021-04-29
Published online: 2021-05-17
Get Citation

Extracranial guiding structures for navigation to specific topographical sectors of the equine neopallium: an anatomical investigation performing three-dimensional distance measurements in adult warm-blooded horses

F. Heun1, L. Böing1, J. Theunert2, H. Gasse1
DOI: 10.5603/FM.a2021.0050
·
Pubmed: 34018176
·
Folia Morphol 2022;81(2):324-335.
Affiliations
  1. Institute of Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
  2. Faculty II — Mechanical Engineering and Bio Process Engineering, University of Applied Sciences and Arts, Hannover, Germany

open access

Vol 81, No 2 (2022)
ORIGINAL ARTICLES
Submitted: 2021-03-05
Accepted: 2021-04-29
Published online: 2021-05-17

Abstract

Background: This basically anatomical study focuses on two items; firstly, the establishment of a system for the cartographic subdivision of the neopallium; secondly, the topographical correlation of extracranial landmarks and intracranial sites on the neopallium.
Materials and methods: The surface of the neopallium was subdivided into 15 sectors with reference to a newly introduced pattern of Primary Sulci. The topographical link between extracranial landmarks and certain intracranial sites (i.e. neopallium sectors) was elaborated by using a simple stereotactic device and a computer-assisted measurement device. Measurements were performed between points on the head’s outer surface and on the isolated brain.
Results and Conclusions: The introduction of an anatomical three-dimensional coordinate system was an essential key issue for this investigation. This setting facilitated the measurements and calculations of the so-called indirect distances that were characterised by their alignment along the three orthogonal axes (x, y, z) of the anatomical coordinate system. The inter-individual comparison (16 adult horses [Equus caballus]) of the indirect distances revealed that each sector centre lay within a distinct morphometric residence area. The measured and calculated data also showed that each sector centre could be assigned to its proper extracranial landmark that — in comparison with other landmarks — was best suited for the optimal allocation of the sector centre point.

Abstract

Background: This basically anatomical study focuses on two items; firstly, the establishment of a system for the cartographic subdivision of the neopallium; secondly, the topographical correlation of extracranial landmarks and intracranial sites on the neopallium.
Materials and methods: The surface of the neopallium was subdivided into 15 sectors with reference to a newly introduced pattern of Primary Sulci. The topographical link between extracranial landmarks and certain intracranial sites (i.e. neopallium sectors) was elaborated by using a simple stereotactic device and a computer-assisted measurement device. Measurements were performed between points on the head’s outer surface and on the isolated brain.
Results and Conclusions: The introduction of an anatomical three-dimensional coordinate system was an essential key issue for this investigation. This setting facilitated the measurements and calculations of the so-called indirect distances that were characterised by their alignment along the three orthogonal axes (x, y, z) of the anatomical coordinate system. The inter-individual comparison (16 adult horses [Equus caballus]) of the indirect distances revealed that each sector centre lay within a distinct morphometric residence area. The measured and calculated data also showed that each sector centre could be assigned to its proper extracranial landmark that — in comparison with other landmarks — was best suited for the optimal allocation of the sector centre point.

Get Citation

Keywords

brain cartography, encephalometry, craniometry, landmark

About this article
Title

Extracranial guiding structures for navigation to specific topographical sectors of the equine neopallium: an anatomical investigation performing three-dimensional distance measurements in adult warm-blooded horses

Journal

Folia Morphologica

Issue

Vol 81, No 2 (2022)

Article type

Original article

Pages

324-335

Published online

2021-05-17

Page views

1187

Article views/downloads

339

DOI

10.5603/FM.a2021.0050

Pubmed

34018176

Bibliographic record

Folia Morphol 2022;81(2):324-335.

Keywords

brain cartography
encephalometry
craniometry
landmark

Authors

F. Heun
L. Böing
J. Theunert
H. Gasse

References (36)
  1. Adrian ED. The somatic receiving area in the brain of the shetland pony. Brain. 1946; 69(1): 1–8.
  2. Arencibia A, Vazquez JM, Ramirez JA, et al. Magnetic resonance imaging of the normal equine brain. Vet Radiol Ultrasound. 2001; 42(5): 405–409.
  3. Arloing MS. Détermination des points excitables du manteau de l´héminsphère des animaux solipèdes. Application a la topographie cérébrale. Association française pour l'avancement des sciences. 1879; 7: 995–1001.
  4. Böhme G. (ed.) Nickel R, Schummer A, Seiferle E. Lehrbuch der Anatomie der Haustiere, Band lV: Nervensystem, Sinnesorgane, endokrine Drüsen (4th ed.). Parey, Stuttgart, Germany 2004.
  5. Böing L. Die arterielle Vaskularisation der Gehirnoberfläche beim adulten Warmblutpferd: Anatomische Untersuchung unter Berücksichtigung des tierartspezifischen Furchungsmusters des Neopalliums (doctoral dissertation). University of Veterinary Medicine, Hannover 2020. https://elib.tiho-hannover.de/receive/tiho_mods_00001263.
  6. Breazile JE, Swafford BC, Biles DR. Motor cortex of the horse. Am J Vet Res. 1966; 27(121): 1605–1609.
  7. Brucker P. Morphometrische Untersuchung des Hirnschädels vom Pferd mit einem computergestützten 3-dimensionalen Messsystem (doctoral dissertation). Cuvillier Verlag, Göttingen 2015. https://elib.tiho-hannover.de/receive/etd_mods_00000427.
  8. Cozzi B, De Giorgio A, Peruffo A, et al. The laminar organization of the motor cortex in monodactylous mammals: a comparative assessment based on horse, chimpanzee, and macaque. Brain Struct Funct. 2017; 222(6): 2743–2757.
  9. Dexler H. Beiträge zur Kenntniss des feineren Baues des Zentralnervensystems der Ungulaten. Gegenbaurs Morphologisches Jahrbuch. 1904; 32: 288–389.
  10. Driesch A. vd. A guide to the measurement of animal bones from archaeological sites. Pea Mus Bull 1. Harvard University, Cambridge, Mass 1978.
  11. Evander RL. Craniometry of the equidae part I: two-dimensional shape analysis. Paludicola. 2008; 7(1): 1–13.
  12. Ferrell EA, Gavin PR, Tucker RL, et al. Magnetic resonance for evaluation of neurologic disease in 12 horses. Vet Radiol Ultrasound. 2002; 43(6): 510–516.
  13. Heun F. Morphometrische Untersuchung der topographischen Beziehungen zwischen externen Landmarks am Kopf und kartographischen Mustern des Neopalliums bei adulten Warmblutpferden (doctoral dissertation). University of Veterinary Medicine, Hannover 2020. https://elib.tiho-hannover.de/receive/tiho_mods_00001268.
  14. Hofmann E, Fimmers R, Schmid M, et al. Landmarks of the Frankfort horizontal plane : Reliability in a three-dimensional Cartesian coordinate system. J Orofac Orthop. 2016; 77(5): 373–383.
  15. Hummel G. Die Feinstruktur der motorischen GroBhirnrinde des Pferdes. Zbl Vet Med C. 1976; 5: 35–53.
  16. Johnson PJ, Janvier V, Luh WM, et al. Equine stereotaxtic population average brain atlas with neuroanatomic correlation. Front Neuroanat. 2019; 13: 89.
  17. Kani Y, Cecere TE, Lahmers K, et al. Diagnostic accuracy of stereotactic brain biopsy for intracranial neoplasia in dogs: Comparison of biopsy, surgical resection, and necropsy specimens. J Vet Intern Med. 2019; 33(3): 1384–1391.
  18. Komosa M, Moliński K, Godynicki S. The variability of cranial morphology in modern horses. Zoolog Sci. 2006; 23(3): 289–298.
  19. Krahmer R. Messungen am Kopfskelett des Pferdes. Ein Beitrag zur Bedeutung der Kraniologie (doctoral dissertation). Karl-Marx-University, Leipzig 1963.
  20. Kramer J, Coates JR, Hoffman AG, et al. Preliminary anatomic investigation of three approaches to the equine cranium and brain for limited craniectomy procedures. Vet Surg. 2007; 36(5): 500–508.
  21. Kuhla B, Bellmann O, Metges CC. Technical note: An apparatus for catheterization of the lateral brain ventricle in Holstein cows. J Dairy Sci. 2010; 93(12): 5837–5841.
  22. Lang A, Brucker P, Ludwig M, et al. The challenge of extra-intra craniometry: a computer-assisted three-dimensional approach on the equine skull. Folia Morphol. 2017; 76(3): 458–472.
  23. Lang A, Sherwood-Brock F, Gasse H. Hermann Dexler’s “Beiträge zur Kenntnis des feineren Baues des Zentralnervensystems der Ungulaten.” An annotated English translation of the original German article ; Part V: Telencephalon – adult stages. Hannover 2018a. https://doi.org/10.15487/tiho.4_2018.1/5 (2018).
  24. Lang A, Wirth G, Gasse H. Review of the surface architecture of the equine neopallium: Principle elements of a cartographic pattern of sulci revisited and further elaborated. Anat Histol Embryol. 2018; 47(4): 280–297.
  25. Löffler K. Untersuchungen über die Wachstumsverhältnisse der Kopfknochen des Pferdes (doctoral dissertation). Hessische Ludwigs-Universität, Giessen 1919.
  26. Ludwig M. Computergestützte Craniometrie beim Pferd unter Berücksichtigung altersabhängiger Lageverschiebungen osteologischer Landmarks. (doctoral dissertation). Cuvillier Verlag, Göttingen 2015. https://elib.tiho-hannover.de/receive/etd_mods_00000406.
  27. Marcilloux JCA. Stereotaxic apparatus for the study of the central nervous structures in the pig. Brain Res Bull. 1989; 22: 591–597.
  28. Mysinger PW, Redding RW, Vaughan JT, et al. Electroencephalographic patterns of clinically normal, sedated, and tranquilized newborn foals and adult horses. Am J Vet Res. 1985; 46(1): 36–41.
  29. Park JAh, Lee JS, Koh KS, et al. Using the zygomatic arch as a reference line for clinical applications and anthropological studies. Surg Radiol Anat. 2019; 41(5): 501–505.
  30. Rossmeisl JH, Andriani RT, Cecere TE, et al. Frame-based stereotactic biopsy of canine brain masses: technique and clinical results in 26 cases. Front Vet Sci. 2015; 2: 20.
  31. Stoll M, Ros K, Vogt C, et al. The hemisphere model: a new description of directions for head radiographs in the horse. Pferdeheilkunde. 2011; 27(2): 115–118.
  32. Stuckenschneider K. Magnetresonanztomographische Untersuchungen der Gehirnregion gesunder und neurologisch erkrankter Pferde mit einer Feldstärke von 3 Tesla. (doctoral dissertation). Cuvillier Verlag, Göttingen 2013. https://elib.tiho-hannover.de/receive/etd_mods_00000668.
  33. Stuckenschneider K, Hellige M, Feige K, et al. 3-Tesla magnetic resonance imaging of the equine brain in healthy horses - Potentials and limitations. Pferdeheilkunde. 2014; 30(6): 657–670.
  34. van der Ree M, Wijnberg I. A review on epilepsy in the horse and the potential of Ambulatory EEG as a diagnostic tool. Vet Q. 2012; 32(3-4): 159–167.
  35. Wijnberg ID, van der Ree M, van Someren P. The applicability of ambulatory electroencephalography (AEEG) in healthy horses and horses with abnormal behaviour or clinical signs of epilepsy. Vet Q. 2013; 33(3): 121–131.
  36. Williams DC, Aleman M, Holliday TA, et al. Qualitative and quantitative characteristics of the electroencephalogram in normal horses during spontaneous drowsiness and sleep. J Vet Intern Med. 2008; 22(3): 630–638.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By  "Via Medica sp. z o.o." sp.k., Świętokrzyska 73, 80–180 Gdańsk, Poland

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl