Vol 80, No 1 (2021)
Review article
Published online: 2020-02-13

open access

Page views 3622
Article views/downloads 12780
Get Citation

Connect on Social Media

Connect on Social Media

Vertebral artery variations revised: origin, course, branches and embryonic development

E.-P. Magklara1, E.-T. Pantelia1, E. Solia1, E. Panagouli1, M. Piagkou1, A. Mazarakis1, P. Skandalakis1, T. Troupis1, D. Filippou1
Pubmed: 32073130
Folia Morphol 2021;80(1):1-12.


Background: The vertebral artery originates from the subclavian artery and is divided into four segments. The aim of this study is to investigate the anatomical variations in the course and branches of the vertebral artery. Materials and methods: A research was performed via PubMed database, using the terms: “variations of vertebral artery AND cadaveric study”, “variations of vertebral artery AND cadavers” and “anomalies of vertebral artery AND cadavers”.

A total of 24 articles met the inclusion criteria, 13 of them referring to variations of the origin of the vertebral artery, 9 to variations of the course and 3 to variations of its branches. On a total sample of 1192 cadavers of different populations, origin of the left vertebral artery directly from the aortic arch was observed at 6.7%. In addition, among 311 cadavers, 17.4% were found with partially or fully ossified foramen of the atlas for the passage of the vertebral artery, while the bibliographic review also showed variants at the exit site of the artery from the transverse foramen of the axis.

Conclusions: Despite the fact that variations of both the course and the branches of vertebral artery are in most cases asymptomatic, good knowledge of anatomy and its variants is of particular importance for the prevention of vascular complications during surgical and radiological procedures in the cervix area.

Article available in PDF format

View PDF Download PDF file


  1. Abd el-Bary TH, Dujovny M, Ausman JI. Microsurgical anatomy of the atlantal part of the vertebral artery. Surg Neurol. 1995; 44(4): 392–400; discussion 400.
  2. Adachi B. Das Arterien system der Japaner. Vol. 1. Verlag der Kaiserlich-Japanischen Universitat, Kenyusha Press, Kyoto 1928.
  3. Afsharpour S, Hoiriis KT, Fox RB, et al. An anatomical study of arcuate foramen and its clinical implications: a case report. Chiropr Man Therap. 2016; 24: 4.
  4. Ahn J, Duran M, Syldort S, et al. Arcuate foramen: anatomy, embryology, nomenclature, pathology, and surgical considerations. World Neurosurg. 2018; 118: 197–202.
  5. Bhatia K, Ghabriel MN, Henneberg M. Anatomical variations in the branches of the human aortic arch: a recent study of a South Australian population. Folia Morphol. 2005; 64(3): 217–223.
  6. Bhimabhai MPA. study of the branching pattern of aortic arch. Nat J Integr Res Med. 2014; 5: 27–30.
  7. Bruneau M, Cornelius JF, Marneffe V, et al. Anatomical variations of the V2 segment of the vertebral artery. Neurosurgery. 2006; 59(1 Suppl 1): ONS20–4; discussion ONS20.
  8. Budhiraja V, Rastogi R, Jain V, et al. Anatomical variations in the branching pattern of human aortic arch: a cadaveric study from central India. ISRN Anat. 2013; 2013: 828969.
  9. Cacciola F, Phalke U, Goel A. Vertebral artery in relationship to C1-C2 vertebrae: an anatomical study. Neurol India. 2004; 52(2): 178–184.
  10. Caplan LR. ertebrobasilar system syndromes. In: Vinken PJ, Bruyn GW, Klawans, eds. Handbook of clinical neurology. ascular disease. Part 1. Elsevier Science Publisher B.V., Amsterdam 1988: 371–409.
  11. Carpenter MB. Neuroanatomy. 4th ed. Williams and Wilkins, Philadelphia 1991: 449.
  12. Chanapa P, Mahakkanukrauh P. Anatomical variations of the V2 vertebral artery study by measuring the width of transverse foramen. J Med Assoc Thai. 2012; 95(4): 569–573.
  13. Civelek E, Kiris T, Hepgul K, et al. Anterolateral approach to the cervical spine: major anatomical structures and landmarks. Technical note. J Neurosurg Spine. 2007; 7(6): 669–678.
  14. Cushing KE, Ramesh V, Gardner-Medwin D, et al. Tethering of the vertebral artery in the congenital arcuate foramen of the atlas vertebra: a possible cause of vertebral artery dissection in children. Dev Med Child Neurol. 2001; 43(7): 491–496.
  15. De Oliveira E, Rhoton A, Peace D. Microsurgical anatomy of the region of the foramen magnum. Surg Neurol. 1985; 24(3): 293–352.
  16. Ebraheim NA, Lu J, Brown JA, et al. Vulnerability of vertebral artery in anterolateral decompression for cervical spondylosis. Clin Orthop Relat Res. 1996(322): 146–151.
  17. Einstein EH, Song LH, Villela NLA, et al. Anomalous origin of the left vertebral artery from the aortic arch. Aorta (Stamford). 2016; 4(2): 64–67.
  18. Francke JP, di Mario V, Pannier M, et al. The vertebral arteries(arteriavertebralis). The V3 atlantoaxial andV4 intracranialsegments-collaterals. Anat Clin (Berl). 1981; 2: 229–242.
  19. Gluncic V, Ivkic G, Marin D, et al. Anomalous origin of both vertebral arteries. Clin Anat. 1999; 12(4): 281–284, doi: 10.1002/(SICI)1098-2353(1999)12:4<281::AID-CA8>3.0.CO;2-6.
  20. Haynes MJ, Cala LA, Melsom A, et al. Posterior ponticles and rotational stenosis of vertebral arteries. A pilot study using Doppler ultrasound velocimetry and magnetic resonance angiography. J Manipulative Physiol Ther. 2005; 28(5): 323–329.
  21. Hecker P. Appareil ligamenteux occipito-atloïdo-axoïdien etude d’anatomie comparée: Archives d’Anatomie, D’Histologie et d’Embryologie. 1922; 1: 417–433.
  22. Heros RC. Lateral suboccipital approach for vertebral and vertebrobasilar artery lesions. J Neurosurg. 1986; 64(4): 559–562.
  23. Hong JT, Park DK, Lee MJ, et al. Anatomical variations of the vertebral artery segment in the lower cervical spine: analysis by three-dimensional computed tomography angiography. Spine. 2008; 33(22): 2422–2426.
  24. Ikegami A, Ohtani Y, Ohtani O. Bilateral variations of the vertebral arteries: the left originating from the aortic arch and the left and right entering the C5 transverse foramina. Anat Sci Int. 2007; 82(3): 175–179.
  25. Kendi AT, Brace JR. Vertebral artery duplication and aneurysms: 64-slice multidetector CT findings. Br J Radiol. 2009; 82(983): e216–e218.
  26. Krayenbühl H, Yasargil MG. Die vaskulären Erkankungen im Gebiet der Arteria vertebralis. Eine anatomische und pagänzungband der Fortschritte auf dem Gebiete der Röntgenstrahlen und der Nuklearmedizin. Thieme, Stuttgart 1957.
  27. Lang J, Kessler B. About the suboccipital part of the vertebral artery and the neighboring bone-joint and nerve relationships. Skull Base Surg. 1991; 1(1): 64–72.
  28. Lang J. Clinical anatomy of the head: neurocranium, orbit and craniocervical regions. Springer-Verlag, New York 1983.
  29. Lazaridis N, Piagkou M, Loukas M, et al. A systematic classification of the vertebral artery variable origin: clinical and surgical implications. Surg Radiol Anat. 2018; 40(7): 779–797.
  30. Li X, Guan L, Zilundu PLM, et al. The applied anatomy and clinical significance of the proximal, V1 segment of vertebral artery. Folia Morphol. 2019; 78(4): 710–719.
  31. Maiti TK, Konar SK, Bir S, et al. Anomalous origin of the right vertebral artery: incidence and significance. World Neurosurg. 2016; 89: 601–610.
  32. Manjunath KY. Posterior bridging of the atlas vertebra in south Indians. Indian J Med Sci. 2001; 55(9): 488–490.
  33. Mitchell J. The incidence of the lateral bridge of the atlas vertebra. J Anat. 1998; 193 (Pt 2): 283–285.
  34. Momma K, Matsuoka R, Takao A. Aortic arch anomalies associated with chromosome 22q11 deletion (CATCH 22). Pediatr Cardiol. 1999; 20(2): 97–102.
  35. Motomura M, Watanabe K, Tabira Y, et al. A case of duplicated right vertebral artery. Kurume Med J. 2018; 64(3): 69–73.
  36. Muralimohan S, Pande A, Vasudevan MC, et al. Suboccipital segment of the vertebral artery: a cadaveric study. Neurol India. 2009; 57(4): 447–452.
  37. Newton TH. The anterior and posterior meningeal branches of the vertebral artery. Radiology. 1968; 91(2): 271–279.
  38. Ohkura K, Shiiya N, Washiyama N, et al. Vertebral artery variations in thoracic aortic patients. Eur J Cardiothorac Surg. 2014; 46(1): 27–31.
  39. O'Malley AM, El Kininy WH, Debebe H, et al. A cadaveric study of aortic arch variation in an Irish population. Ir J Med Sci. 2018; 187(3): 853–858.
  40. Paraskevas G, Papaziogas B, Tsonidis C, et al. Gross morphology of the bridges over the vertebral artery groove on the atlas. Surg Radiol Anat. 2005; 27(2): 129–136.
  41. Patil ST, Meshram MM, Kamdi NY, et al. Study on branching pattern of aortic arch in Indian. Anat Cell Biol. 2012; 45(3): 203–206.
  42. Pękala PA, Henry BM, Pękala JR, et al. Prevalence of foramen arcuale and its clinical significance: a meta-analysis of 55,985 subjects. J Neurosurg Spine. 2017; 27(3): 276–290.
  43. Pick TP, Howden R. Gray’s anatomy, descriptive and surgical. Bounty Books, New York 1901.
  44. Russo VM, Graziano F, Peris-Celda M, et al. The V(2) segment of the vertebral artery: anatomical considerations and surgical implications. J Neurosurg Spine. 2011; 15(6): 610–619.
  45. Schwedt K. Form-und Lagervariationen der extrakraniellen Arteria vertebralis im Angiogramm. Medical Dissertation, Wurzburg 1978.
  46. Senoglu M, Gümüşalan Y, Yüksel KZ, et al. The effect of posterior bridging of C-1 on craniovertebral junction surgery. J Neurosurg Spine. 2006; 5(1): 50–52.
  47. Shin IY, Chung YG, Shin WH, et al. A morphometric study on cadaveric aortic arch and its major branches in 25 korean adults : the perspective of endovascular surgery. J Korean Neurosurg Soc. 2008; 44(2): 78–83.
  48. Sim E, Vaccaro AR, Berzlanovich A, et al. Fenestration of the extracranial vertebral artery: review of theliterature. Spine. 2001; 26: E139–E142.
  49. Singh R. Two rare variants of left vertebral artery. J Craniofac Surg. 2017; 28(4): 1105–1106.
  50. Taitz C, Nathan H. Some observations on the posterior and lateral bridge of the atlas. Acta Anat (Basel). 1986; 127(3): 212–217.
  51. Tardieu GG, Edwards B, Alonso F, et al. Aortic arch origin of the left vertebral artery: an anatomical and radiological study with significance for avoiding complications with anterior approaches to the cervical spine. Clin Anat. 2017; 30(6): 811–816.
  52. Toldt C, Hochstetter F. Anatomischer Atlas, vol. 2, 27th ed. Urban & Schwarzenberg, München 1979.
  53. Tubbs RS, Stetler W, Shoja MM, et al. The lateral atlantooccipital ligament. Surg Radiol Anat. 2007; 29(3): 219–223.
  54. Ulm AJ, Quiroga M, Russo A, et al. Normal anatomical variations of the V₃ segment of the vertebral artery: surgical implications. J Neurosurg Spine. 2010; 13(4): 451–460.
  55. Vanitha V, Teli CG, Kadlimatti HS. Bilateral posterior and lateral ponticles resulting in the formation of vertebral artery canal for the atlas: case report. IOSR J Dental Med Sci. 2014; 13(5): 82–84.
  56. Vorster W, du Plooy PT, Meiring JH. Abnormal origin of internal thoracic and vertebral arteries. Clin Anat. 1998; 11(1): 33–37, doi: 10.1002/(sici)1098-2353(1998)11:1<33::aid-ca5>3.0.co;2-t.
  57. Wakao N, Takeuchi M, Nishimura M, et al. Vertebral artery variations and osseous anomaly at the C1-2 level diagnosed by 3D CT angiography in normal subjects. Neuroradiology. 2014; 56(10): 843–849.
  58. Wang X, Tang G, Li M. Bilateral extradural posterior inferior cerebellar artery origins where vertebral artery ascends between transverse foramina of C-2 and C-1, with simultaneous right double origin PICA: rare case report and literature review. World Neurosurg. 2019; 125: 234–239.
  59. Wight S, Osborne N, Breen AC. Incidence of ponticulus posterior of the atlas in migraine and cervicogenic headache. J Manipulative Physiol Ther. 1999; 22(1): 15–20.
  60. Woraputtaporn W, Ananteerakul T, Iamsaard S, et al. Incidence of vertebral artery of aortic arch origin, its level of entry into transverse foramen, length, diameter and clinical significance. Anat Sci Int. 2019; 94(4): 275–279.
  61. Yamaki Ki, Saga T, Hirata T, et al. Anatomical study of the vertebral artery in Japanese adults. Anat Sci Int. 2006; 81(2): 100–106.
  62. Zhu SW, Yang Y, Liu YG, et al. Anatomical features and clinical significance of radiculomuscular artery variants involving the suboccipital segment of vertebral artery: angiographic and cadaver studies. Clin Neuroradiol. 2018; 28(1): 75–80.