open access

Vol 78, No 4 (2019)
Original article
Submitted: 2018-12-14
Accepted: 2019-02-04
Published online: 2019-02-28
Get Citation

Some segmental morphological and morphometrical features of the intima and media of the aortic wall in Chinchilla lanigera

C. O. Martonos1, A. I. Gudea1, A. Damian1, V. Miclăuș2, V. Rus2, F. G. Stan1
·
Pubmed: 30835342
·
Folia Morphol 2019;78(4):729-737.
Affiliations
  1. Department of Comparative Anatomy, Faculty of Veterinary Medicine Cluj-Napoca, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
  2. Department of Histology, Faculty of Veterinary Medicine Cluj-Napoca, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania

open access

Vol 78, No 4 (2019)
ORIGINAL ARTICLES
Submitted: 2018-12-14
Accepted: 2019-02-04
Published online: 2019-02-28

Abstract

Background: The aim of this study is to describe the morphology, morphometry and ultrastructure of segments of the thoracic and abdominal aorta portions in Chinchilla lanigera. Thickness measurements of the tunica intima and media complex of the aorta were taken. Materials and methods: In all observed specimens, the thickness values for the tunica intima and media complex of the cranial thoracic aorta were significantly higher (mean: 702.19 μm) when compared to the values of other analysed aortic segments (means: 354.18 μm; 243.55 μm). Complex statistical methods were used to assess the differences between various aortic segments. Results and Conclusions: The components of the vessel walls show variations in structure and thickness, presumably due to an adaptation to functional demand.

Abstract

Background: The aim of this study is to describe the morphology, morphometry and ultrastructure of segments of the thoracic and abdominal aorta portions in Chinchilla lanigera. Thickness measurements of the tunica intima and media complex of the aorta were taken. Materials and methods: In all observed specimens, the thickness values for the tunica intima and media complex of the cranial thoracic aorta were significantly higher (mean: 702.19 μm) when compared to the values of other analysed aortic segments (means: 354.18 μm; 243.55 μm). Complex statistical methods were used to assess the differences between various aortic segments. Results and Conclusions: The components of the vessel walls show variations in structure and thickness, presumably due to an adaptation to functional demand.

Get Citation

Keywords

arteries, chinchilla, aorta, quantitative histological, qualitative histological, media, intima, post hoc

About this article
Title

Some segmental morphological and morphometrical features of the intima and media of the aortic wall in Chinchilla lanigera

Journal

Folia Morphologica

Issue

Vol 78, No 4 (2019)

Article type

Original article

Pages

729-737

Published online

2019-02-28

Page views

1060

Article views/downloads

827

DOI

10.5603/FM.a2019.0023

Pubmed

30835342

Bibliographic record

Folia Morphol 2019;78(4):729-737.

Keywords

arteries
chinchilla
aorta
quantitative histological
qualitative histological
media
intima
post hoc

Authors

C. O. Martonos
A. I. Gudea
A. Damian
V. Miclăuș
V. Rus
F. G. Stan

References (36)
  1. Al-Jarallah A, Akinpelu OV, Citra D, et al. Ototoxicity of baby oil in a chinchilla animal model. Int J Pediatr Otorhinolaryngol. 2012; 76(4): 564–568.
  2. Awal MA, Matsumoto M, Nishinakagawa H. Morphometrical changes of the arterial walls of main arteries from heart to the abdomino-inguinal mammary glands of rat from virgin through pregnancy, lactation and post-weaning. J Vet Med Sci. 1995; 57(2): 251–256.
  3. Barone R. Anatomie comparee des mammiferes domesticques. Tome cinquieme. Angiologie. Editions Vigot, Paris 1996.
  4. Clark JM, Glagov S. Transmural organization of the arterial media. The lamellar unit revisited. Arteriosclerosis. 1985; 5(1): 19–34.
  5. Cooper G, Schiller A. Anatomy of the Guinea pig. Nature. 1976; 260(5548): 204–204.
  6. Csibi D, Miclaus V, Martonos C, et al. Proportional representation and structure of tunicae in large arteries in rabbit. Bull Univ Agric Sci Vet Med Cluj-Napoca Vet Med. 2014; 71(2): 395–401.
  7. Davies PF, Zilberberg J, Helmke BP. Spatial microstimuli in endothelial mechanosignaling. Circ Res. 2003; 92(4): 359–370.
  8. Dingemans KP, Jansen N, Becker AE. Ultrastructure of the normal human aortic media. Virchows Arch A Pathol Anat Histol. 1981; 392(2): 199–216.
  9. Eurell JA, Brian L. Frappier Dellmann’s Textbook of Veterinary Histology, 6th ed. Wiley-Blackwell, Blackwell Publishing, Ames, Iowa, USA 2007.
  10. Filho SPG, Martins LL, Reis A, et al. Estrutura, ultraestrutura e morfometria da aorta de paca (Cuniculus paca, Linnaeus, 1766) criada em cativeiro. Arq Bras Med Vet Zootec. 2012; 64(3): 599–605.
  11. Gibbons CA, Shadwick RE. Functional similarities in the mechanical design of the aorta in lower vertebrates and mammals. Experientia. 1989; 45(11-12): 1083–1088.
  12. Gibbons CA, Shadwick RE. Circulatory Mechanics in the Toad Bufo Marinus: I. Structure and Mechanical Design of the Aorta. J Exp Biol 158. 1991; 275: LP–289.
  13. Giebink GS. Otitis media: the chinchilla model. Microb Drug Resist. 1999; 5(1): 57–72.
  14. Hitt BM, Wang X, Gan RZ. Dynamic property changes in stapedial annular ligament associated with acute otitis media in the chinchilla. Med Eng Phys. 2017; 40: 65–74.
  15. Kerschner JE, Khampang P, Samuels T. Extending the chinchilla middle ear epithelial model for mucin gene investigation. Int J Pediatr Otorhinolaryngol. 2010; 74(9): 980–985.
  16. Komolafe OA, Adeyemi DO, Adewole OS, et al. Morphological and morphometric studies of the aorta, pulmonary trunk, and heart of streptozotocin-induced diabetic Wistar rats. Folia Morphol. 2009; 68(4): 207–214.
  17. Locquin MV, Langeron M, Hillman H. Handbook of microscopy. Butterworth, Heinemann 2013.
  18. Maravilla P, Garza-Rodriguez A, Gomez-Diaz B, et al. Chinchilla laniger can be used as an experimental model for Taenia solium taeniasis. Parasitol Int. 2011; 60(4): 364–370.
  19. Martins M, Silva JP, Martins B. Contribution to the Study of Aortic Mural Structure of Opossum (Didelphis albiventris). Int J Morphol. 2010; 28(1): 277–282.
  20. Martonos C, Dezdrobitu C, Rus V, et al. Distributon of the Terminals of the Descending Abdominal Aorta in Chinchillas. Bull Univ Agric Sci Vet Med Cluj-Napoca Vet Med. 2014; 71(2).
  21. Mello J, Orsi A, Domingues R, et al. Arquitetura da parede vascular de segmentos torácico e abdominais da aorta de macaco prego (Cebus apella). Brazilian J Vet Res Anim Sci. 2009; 46(1): 40.
  22. Mello JM, Orsi AM, Padovani CR. Structure of the aortic wall in the guinea pig and rat. Braz J Morphol. 2004; 21: 35–38.
  23. Mello J, Orsi A, Padovani C, et al. Some segmental structural features of the aortic wall of domestic chicken (Gallus domesticus). Brazilian J Vet Res Anim Sci. 2003; 40: 163–169.
  24. Ogeng'o JA, Malek AA, Kiama SG. Structural organisation of tunica intima in the aorta of the goat. Folia Morphol. 2010; 69(3): 164–169.
  25. Ogeng'o JA, Malek AKA, Kiama SG. Regional differences in aorta of goat (capra hircus). Folia Morphol. 2010; 69(4): 253–257.
  26. Oliveira REM. de, Júnior HN de A, Costa H da S, Oliveira GB de, Moura CEB de, Menezes DJA de, Oliveira MF de Artérias colaterais do arco aórtico do gerbil ( Meriones unguiculatus ). Acta Sci Vet. 2018; 55: 1–8.
  27. Orsi AM, Stefanini MA, Crocci AJ, et al. Some segmental features on the structure of the aortic wall of the dog. Anat Histol Embryol. 2004; 33(3): 131–134.
  28. Osborne-Pellegrin MJ. Some ultrastructural characteristics of the renal artery and abdominal aorta in the rat. J Anat. 1978; 125(Pt 3): 641–652.
  29. Ozdemir V, Cevik-Demirkan A, Türkmenoğlu I. Subgross and macroscopic investigation of blood vessels originating from aortic arch in the chinchilla (Chinchilla lanigera). Anat Histol Embryol. 2008; 37(2): 131–133.
  30. Ozdemir V, Cevik Demirkan A, Akosman MS. Subgross and macroscopic investigation of the coeliac artery in the chinchilla (chinchilla lanigera). Folia Morphol. 2013; 72(3): 258–262.
  31. Ozdemir V, Cevik-Demirkan A, Turkmenoglu I. The right coronary artery is absent in the chinchilla (Chinchilla lanigera). Anat Histol Embryol. 2008; 37(2): 114–117.
  32. Prodan M. Histological Studies on the Arterial Walls of Main Arteries Supplying the Mammary Glands of Dogs (Canis familiaris) in Bangladesh. Pakistan J Biol Sci. 2001; 4(12): 1568–1571.
  33. Qi M, Luo N, Wang H, et al. Zoonotic Cryptosporidium spp. and Enterocytozoon bieneusi in pet chinchillas (Chinchilla lanigera) in China. Parasitol Int. 2015; 64(5): 339–341.
  34. Suckow M, Stevens K, Wilson R. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. 2012.
  35. Westerhof N, Lankhaar JW, Westerhof BE. The arterial Windkessel. Med Biol Eng Comput. 2009; 47(2): 131–141.
  36. Zaki SM, Youssef MF. Thyroid hormone dysfunctions affect the structure of rat thoracic aorta: a histological and morphometric study. Folia Morphol. 2013; 72(4): 333–339.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., Grupa Via Medica, Świętokrzyska 73, 80–180 Gdańsk, Poland

tel.: +48 58 320 94 94, faks: +48 58 320 94 60, e-mail: viamedica@viamedica.pl