open access

Vol 78, No 2 (2019)
Original article
Submitted: 2018-07-10
Accepted: 2018-09-23
Published online: 2018-10-16
Get Citation

Blind mole rat (Spalax leucodon) masseter muscle: structure, homology, diversification and nomenclature

A. Yoldas1, M. Demir1, R. İlgun2, M.O. Dayan3
·
Pubmed: 30371935
·
Folia Morphol 2019;78(2):419-424.
Affiliations
  1. Department of Anatomy, Faculty of Medicine, Kahramanmaras University, Kahramanmaras, Turkey
  2. Department of Anatomy, Faculty of Veterinary Medicine, Aksaray University, Aksaray, Turkey
  3. Department of Anatomy, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey

open access

Vol 78, No 2 (2019)
ORIGINAL ARTICLES
Submitted: 2018-07-10
Accepted: 2018-09-23
Published online: 2018-10-16

Abstract

Background: It is well known that rodents are defined by a unique masticatory apparatus. The present study describes the design and structure of the masseter muscle of the blind mole rat (Spalax leucodon). The blind mole rat, which emer- ged 5.3–3.4 million years ago during the Late Pliocene period, is a subterranean, hypoxia-tolerant and cancer-resistant rodent. Yet, despite these impressive cha- racteristics, no information exists on their masticatory musculature. 

Materials and methods: Fifteen adult blind mole rats were used in this study. Dissections were performed to investigate the anatomical characteristics of the masseter muscle.

Results: The muscle was comprised of three different parts: the superficial mas- seter, the deep masseter and the zygomaticomandibularis muscle. The superficial masseter originated from the facial fossa at the ventral side of the infraorbital foramen. The deep masseter was separated into anterior and posterior parts. The anterior part of the zygomaticomandibularis muscle arose from the snout and passed through the infraorbital foramen to connect on the mandible. 

Conclusions: The construction of the deep masseter and zygomaticomandibularis muscles were of the Myomorpha type. Further studies are needed to reveal features such as muscle biomechanics, muscle types. 

Abstract

Background: It is well known that rodents are defined by a unique masticatory apparatus. The present study describes the design and structure of the masseter muscle of the blind mole rat (Spalax leucodon). The blind mole rat, which emer- ged 5.3–3.4 million years ago during the Late Pliocene period, is a subterranean, hypoxia-tolerant and cancer-resistant rodent. Yet, despite these impressive cha- racteristics, no information exists on their masticatory musculature. 

Materials and methods: Fifteen adult blind mole rats were used in this study. Dissections were performed to investigate the anatomical characteristics of the masseter muscle.

Results: The muscle was comprised of three different parts: the superficial mas- seter, the deep masseter and the zygomaticomandibularis muscle. The superficial masseter originated from the facial fossa at the ventral side of the infraorbital foramen. The deep masseter was separated into anterior and posterior parts. The anterior part of the zygomaticomandibularis muscle arose from the snout and passed through the infraorbital foramen to connect on the mandible. 

Conclusions: The construction of the deep masseter and zygomaticomandibularis muscles were of the Myomorpha type. Further studies are needed to reveal features such as muscle biomechanics, muscle types. 

Get Citation

Keywords

anatomy; masseter muscle; Spalax leucodon

About this article
Title

Blind mole rat (Spalax leucodon) masseter muscle: structure, homology, diversification and nomenclature

Journal

Folia Morphologica

Issue

Vol 78, No 2 (2019)

Article type

Original article

Pages

419-424

Published online

2018-10-16

Page views

2287

Article views/downloads

1272

DOI

10.5603/FM.a2018.0097

Pubmed

30371935

Bibliographic record

Folia Morphol 2019;78(2):419-424.

Keywords

anatomy
masseter muscle
Spalax leucodon

Authors

A. Yoldas
M. Demir
R. İlgun
M.O. Dayan

References (42)
  1. Baverstock H, Jeffery NS, Cobb SN. The morphology of the mouse masticatory musculature. J Anat. 2013; 223(1): 46–60.
  2. Brandt JK. BeitragezurnahernKenntniss der SaugethiereRusslands. Memoires de l'Acade´mieImpe´ riale des. Sciences de St Petersbourg. 1855; 69: 1–375.
  3. Bresin A, Bagge U, Kiliaridis S. Adaptation of normal and hypofunctional masseter muscle after bite-raising in growing rats. Eur J Oral Sci. 2000; 108(6): 493–503.
  4. Byrd KE. Mandibular movement and muscle activity during mastication in the guinea pig (Cavia porcellus). J Morphol. 1981; 170(2): 147–169.
  5. Cox PG, Jeffery N. Reviewing the morphology of the jaw-closing musculature in squirrels, rats, and guinea pigs with contrast-enhanced microCT. Anat Rec (Hoboken). 2011; 294(6): 915–928.
  6. Druzinsky RE, Doherty AH, De Vree FL. Mammalian masticatory muscles: homology, nomenclature, and diversification. Integr Comp Biol. 2011; 51(2): 224–234.
  7. Druzinsky RE. Functional anatomy of incisal biting in Aplodontia rufa and sciuromorph rodents - part 1: masticatory muscles, skull shape and digging. Cells Tissues Organs. 2010; 191(6): 510–522.
  8. Edoute Y, Arieli R, Nevo E. Evidence for improved myocardial oxygen delivery and function during hypoxia in the mole rat. J Comp Physiol B. 1988; 158(5): 575–582.
  9. Eroglu F. Çorum city Spalax Leucodon Nordmann. 1840 the caryiological and morphological analysis of Mammalia: Rodentia. Zonguldak Karaelmas University Science. 2006.
  10. Gorbunova V, Hine C, Tian X, et al. Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Proc Natl Acad Sci U S A. 2012; 109(47): 19392–19396.
  11. Greene EC. Anatomy the Rat. Transactions of the American PtvIosophicaI Society. Vol. XXVII, Hainer Publishing Company, New York and London. 1963.
  12. Hautier L, Saksiri S. Masticatory muscle architecture in the Laotian rock rat Laonastes aenigmamus (Mammalia, Rodentia): new insights into the evolution of hystricognathy. J Anat. 2009; 215(4): 401–410.
  13. Herring SW. Masticatory muscles and the skull: a comparative perspective. Arch Oral Biol. 2007; 52(4): 296–299.
  14. Hiiemae K, Houston W. The structure and function of the jaw muscles in the rat (Rattus norvegicus L.). Zoological J Linnean Society. 1971; 50(1): 75–99.
  15. Hill JE. Morphology of the pocket gopher mammalian genus thomomys. Univ Calif Publ Zool. 1937; 42: 1–171.
  16. Howell A. The saltatorial rodent dipodomys: the functional and comparative anatomy of its muscular and osseous systems. Proc Am Acad Arts Scien. 1932; 67(10): 377.
  17. İlgun R, Yoldas A, Kuru N, et al. Macroscopic anatomy of the lower respiratory system in mole rats (Spalax leucodon). Anat Histol Embryol. 2014; 43(6): 474–481.
  18. Kıvanc E. The geographic variations of Turkey Spalax. Ankara (Notes in Turkish. 1988: 72–88.
  19. Kleinschmidt T, Nevo E, Braunitzer G. The primary structure of the hemoglobin of the mole rat (Spalax ehrenbergi, rodentia, chromosome species 60). Hoppe Seylers Z Physiol Chem. 1984; 365(5): 531–537.
  20. Klingener D. The Comparative Myology of Four Dipodoid Rodents: Genera Zapus, Napaeozapus, Sicista, and Jaculus. Front Cover, Museum of Zoology. University of Michigan. 1964.
  21. Malik A, Bicker A, Poetzsch G, et al. Hypoxia tolerance, longevity and cancer-resistance in the mole rat Spalax – a liver transcriptomics approach. Scientific Reports. 2017; 7(1).
  22. Miller G, Gidley J. Synopsis of the supergenerie groups of rodents. J Washington Acad Scien. 1918; 8: 431–448.
  23. Musser GG, Carleton MD. Suerfamily Muroidea. In: Wilson DE, Reeder DM (eds.). Mammal Secies of the World: a Taxonomic and Geograhic Reference. 3rd ed. Baltimore: Johns Hokins University Press. 2005: 894–1531.
  24. Nevo E. utionary theory and processes of active speciation and adaptive radiation in subterranean mole rats. Spalaxehrenbergisuperspecies in Israel Evol Biology. 1991; 25: 1–125.
  25. Norris RW, Zhou K, Zhou C, et al. The phylogenetic position of the zokors (Myospalacinae) and comments on the families of muroids (Rodentia). Mol Phylogenet Evol. 2004; 31(3): 972–978.
  26. Odagiri N, Kubota K, Shibanai S. Density of muscle spindles in the jaw muscles of the Japanese flying squirrel and the guinea pig. Ann Anat. 1993; 175(3): 263–270.
  27. Ozkan ZE. Macro-anatomical investigations on the skeletons of mole-rat (Spalax leucodon Nordmann) III. Skeleton axiale Veterinarski Arhiv. 2077; 7(3): 281–289.
  28. Rinker GC. The comparative myology of the mammalian genera Sigmodon, Oryzomys, Neotoma, and Peromyscus (Cricetinae), with remarks on their intergeneric relationships. MiscPublMusZoolUniv Michigan. 1954; 83: 1–124.
  29. Satoh K. Mechanical advantage of area of origin for the external pterygoid muscle in two murid rodents,Apodemus speciosus andClethrionomys rufocanus. J Morphol. 1999; 240(1): 1–14, doi: 10.1002/(sici)1097-4687(199904)240:1<1::aid-jmor1>3.0.co;2-d.
  30. Scapino RP. Biomechanics of Feeding in Carnivora. Chicago. Illinois: Dissertation, University of Illinois. 1968.
  31. Shams I, Aaron A, Eviatar N. Hypoxic stress tolerance of the blind subterrean mole rat. Laboratory of Animal Molecular Evolution. Institute of Evolution, University of Haifa, Mount Carmel, Haifa. 2004; 10(1): 9698–9703.
  32. Thorington R, Darrow K. Jaw muscles of Old World squirrels. J Morphol. 1996; 230(2): 145–165, doi: 10.1002/(sici)1097-4687(199611)230:2<145::aid-jmor3>3.0.co;2-g.
  33. Turnbull WD. Mammalian masticatory apparatus. Fieldiana Geol. 1970; 18(2): 147–356.
  34. Vianey-Liaud M. Possible evolutionary relationships among Eocene and Lower Oligocene rodents of Asia, Europe, and North America. In: Luckett E.W.P., Hartenberger E.j.L.(eds): Evolutionary Relationships among Rodents: A Multidisciplinary Analysis. New York Plenum Press NATO ASI. 1985.
  35. Warburton NM. Comparative jaw muscle anatomy in kangaroos, wallabies, and rat-kangaroos (marsupialia: macropodoidea). Anat Rec (Hoboken). 2009; 292(6): 875–884.
  36. Weijs W. Morphology of the muscles of mastication in the albino rat Rattusnorvegicus. Acta Morph Neerl-Scand. 1973; 11: 312–340.
  37. William PW, Sherri JH. Biomechanical analysis of mastication in the fossil rodent ischyromys and its bearing on the origin of sciuromorphs, Technical Report N.P. Service Paleontology Research. 1993; 2: 21.
  38. Wood AE. The evolution of Old World and New World hystricomorphs. In: Rowlands I. W, Weir B.J. (eds): The Biology of Hystricognath Rodents. London, Academic Press, SympZoolSoc London. 1974; 34: 21–60.
  39. Woods CA, Howland EB. Adaptive Radiation of Capromyid Rodents: Anatomy of the Masticatory Apparatus. J Mammal. 1979; 60(1): 95–116.
  40. Woods CA. Comparative myology of jaw, hyoid, and pectoral appendicular regions of new and old world hystricomorph rodents. Bull Am Mus Nat Hist. 1972; 147: 115–198.
  41. Yalcın H, Arslan A, Tıpırdamaz S. Macro-anatomical investigations on the masticatory muscles of tree squirrel. Vet. Bilimleri, Dergisi 2003; 19. ; 3(4): 83–88.
  42. Zanjani ED, Poster J, Burlington H, et al. Liver as the primary site of erythropoietin formation in the fetus. J Lab Clin Med. 1977; 89(3): 640–644.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., Grupa Via Medica, Świętokrzyska 73, 80–180 Gdańsk, Poland

tel.: +48 58 320 94 94, faks: +48 58 320 94 60, e-mail: viamedica@viamedica.pl