Morphological changes in cerebrospinal fluid production
Abstract
The ventricular system and subarachnoid space are filled with cerebrospinal fluid, which plays a key role in the nervous system. This fluid is produced by the choroid plexus, an organ rich in ion transporters that precisely control the transport of specific ions into the cerebrospinal fluid thanks to tight junctions between the plexus cells; these prevent the passage of substances other than the transporters, thus allowing for precise control of the fluid composition.
Cerebrospinal fluid production is based on a network of interrelationships between specific ion flows enabled by the numerous transporters. The fluid is cleaned and resorbed by the glymphatic system via multiple absorption pathways. Maintaining proper cerebrospinal fluid parameters is extremely important for proper brain function. Considering the fragility of the brain, even small fluctuations in cerebrospinal fluid composition can impair its condition. Therefore, to understand the nervous system, it is important to have thorough knowledge of the production, transport, and resorption mechanisms of cerebrospinal fluid.
The aim of this paper is to summarize the current state of knowledge about the mechanisms of production, pathways of absorption and physiological values of cerebrospinal fluid parameters; it also discusses the role of the glymphatic system in maintaining fluid homeostasis, and the changes resulting from its dysfunction as result of trauma.
Keywords: Alzheimer’s diseaseaquaporinchoroid plexusglymphatic systemhemorrhagic strokeischemic strokelymphaticnervestraumatic brain injury
References
- Ahn JiH, Cho H, Kim JH, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature. 2019; 572(7767): 62–66.
- Akeret K, Buzzi RM, Schaer CA, et al. Cerebrospinal fluid hemoglobin drives subarachnoid hemorrhage-related secondary brain injury. J Cereb Blood Flow Metab. 2021; 41(11): 3000–3015.
- Armstrong RA. Risk factors for Alzheimer disease. Folia Neuropathol. 2019; 57(2): 87–105.
- Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015; 212(7): 991–999.
- Assémat E, Châtelet F, Chandellier J, et al. Overlapping expression patterns of the multiligand endocytic receptors cubilin and megalin in the CNS, sensory organs and developing epithelia of the rodent embryo. Gene Expr Patterns. 2005; 6(1): 69–78.
- Balança B, Desmurs L, Grelier J, et al. DAMPs and RAGE pathophysiology at the acute phase of brain injury: an overview. Int J Mol Sci. 2021; 22(5).
- Bateman RJ, Xiong C, Benzinger TLS, et al. Dominantly Inherited Alzheimer Network. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med. 2012; 367(8): 780–780.
- Benveniste H, Heerdt PM, Fontes M, et al. Glymphatic system function in relation to anesthesia and sleep states. Anesth Analg. 2019; 128(4): 747–758.
- Bialas AR, Stevens B, Bialas AR, et al. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci. 2013; 16(12): 1773–1782.
- Bjerke M, Engelborghs S. Cerebrospinal fluid biomarkers for early and differential alzheimer's disease diagnosis. J Alzheimers Dis. 2018; 62(3): 1199–1209.
- BL W, Gao A, Leonard D, et al. Midlife fitness predicts less burden of chronic disease in later life. Clin J Sport Med. 2013; 23(6): 499–500.
- Blennow K. Traumatic brain injuries. Nat Rev Dis Primers. 2016; 2: 16085.
- Bothwell SW, Janigro D, Patabendige A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS. 2019; 16(1): 9.
- Boulton M, Armstrong D, Flessner M, et al. Raised intracranial pressure increases CSF drainage through arachnoid villi and extracranial lymphatics. Am J Physiol. 1998; 275(3): R889–R896.
- Bradbury MW, Cserr HF, Westrop RJ. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol. 1981; 240(4): 329–336.
- Brinker T, Stopa E, Morrison J, et al. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014; 11: 10.
- Bueno D, Parvas M. Disruption of embryonic blood-CSF barrier in chick embryos reveals the actual importance of this barrier to control E-CSF composition and homeostasis in early brain development. Open J Neurosci. 2011(1-3).
- Bueno D, Parvas M, Hermelo I, et al. Embryonic blood-cerebrospinal fluid barrier formation and function. Front Neurosci. 2014; 8: 343.
- Chamberlain MC, Kormanik PA, Glantz MJ. A comparison between ventricular and lumbar cerebrospinal fluid cytology in adult patients with leptomeningeal metastases. Neuro Oncol. 2001; 3(1): 42–45.
- Chen S, Zeng L, Hu Z. Progressing haemorrhagic stroke: categories, causes, mechanisms and managements. J Neurol. 2014; 261(11): 2061–2078.
- Cheng KP, Brodnick SK, Blanz SL, et al. Clinically-derived vagus nerve stimulation enhances cerebrospinal fluid penetrance. Brain Stimul. 2020; 13(4): 1024–1030.
- Choi JH, Pile-Spellman J. Selective brain hypothermia. Handb Clin Neurol. 2018; 157: 839–852.
- Costea L, Mészáros Á, Bauer H, et al. The blood-brain barrier and its intercellular junctions in age-related brain disorders. Int J Mol Sci. 2019; 20(21).
- Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev. 2013; 93(4): 1847–1892.
- Di Terlizzi R, Platt S. The function, composition and analysis of cerebrospinal fluid in companion animals: part I — function and composition. Vet J. 2006; 172(3): 422–431.
- Dias V, Junn E, Mouradian MM. Molecular mechanisms of cerebrospinal fluid production. J Parkinsons Dis. 2013; 3(4): 461–491.
- Dziegielewska KM, Evans CA, Lai PC, et al. Proteins in cerebrospinal fluid and plasma of fetal rats during development. Dev Biol. 1981; 83(1): 193–200.
- Egorova N, Gottlieb E, Khlif MS, et al. Choroid plexus volume after stroke. Int J Stroke. 2019; 14(9): 923–930.
- Gato A, Martín P, Alonso MI, et al. Analysis of cerebro-spinal fluid protein composition in early developmental stages in chick embryos. J Exp Zool A Comp Exp Biol. 2004; 301(4): 280–289.
- Georges A, Das JM. Traumatic brain injury. StatPearls [Internet], Treasure Island 2022.
- Glass JP, Melamed M, Chernik NL, et al. Malignant cells in cerebrospinal fluid (CSF): the meaning of a positive CSF cytology. Neurology. 1979; 29(10): 1369–1375.
- Graham DI, Gentleman SM, Lynch A, et al. Distribution of beta-amyloid protein in the brain following severe head injury. Neuropathol Appl Neurobiol. 1995; 21(1): 27–34.
- Grilli M, Barbieri I, Basudev H, et al. Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. Eur J Neurosci. 2000; 12(7): 2265–2272.
- Hablitz LM, Plá V, Giannetto M, et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun. 2020; 11(1): 4411.
- Hartmann P, Ramseier A, Gudat F, et al. Normal weight of the brain in adults in relation to age, sex, body height and weight. Pathologe. 1994; 15(3): 165–170.
- Haustrate A, Prevarskaya N, Lehen'kyi V. Role of the TRPV channels in the endoplasmic reticulum calcium homeostasis. Cells. 2020; 9(2).
- Hegen H, Walde J, Auer M, et al. Cerebrospinal fluid:serum glucose ratio in the ventricular and lumbar compartments: implications for clinical practice. Eur J Neurol. 2018; 25(2): 373–379.
- Helmy A, Guilfoyle MR, Carpenter KLH, et al. Recombinant human interleukin-1 receptor antagonist in severe traumatic brain injury: a phase II randomized control trial. J Cereb Blood Flow Metab. 2014; 34(5): 845–851.
- Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014; 11(1): 26.
- Jessen NA, Munk AS, Lundgaard I, et al. The glymphatic system: a beginner's guide. Neurochem Res. 2015; 40(12): 2583–2599.
- Johnson VE, Hay JR, Young AMH, et al. Widespread τ and amyloid-β pathology many years after a single traumatic brain injury in humans. Brain Pathol. 2012; 22(2): 142–149.
- Johnston M. The importance of lymphatics in cerebrospinal fluid transport. Lymphat Res Biol. 2003; 1(1): 41–44.
- Kalkhoran S, Benowitz NL, Rigotti NA. Prevention and treatment of tobacco use: JACC health promotion series. J Am Coll Cardiol. 2018; 72(9): 1030–1045.
- Kanazawa M, Ninomiya I, Hatakeyama M, et al. Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke. Int J Mol Sci. 2017; 18(10).
- Kapoor M, Rossor AM, Laura M, et al. Clinical presentation, diagnosis and treatment of TTR amyloidosis. J Neuromuscul Dis. 2019; 6(2): 189–199.
- Karadsheh MF, Byun N, Mount DB, et al. Localization of the KCC4 potassium-chloride cotransporter in the nervous system. Neuroscience. 2004; 123(2): 381–391.
- Kida S, Pantazis A, Weller RO. CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol. 1993; 19(6): 480–488.
- Kim YK, Shin JS, Nahm MH. NOD-like receptors in infection, immunity, and diseases. Yonsei Med J. 2016; 57(1): 5–14.
- Koleva M, Orlandom DJ. Hydrocephalus. StatPearls [Internet], Treasure Island 2021.
- Kress BT, Iliif JJ, Xia M. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014; 76(6): 845–861.
- Lakhani CM, Davis BM, Glen F, et al. The brain’s glymphatic system: current controversies. Physiol Behav. 2017; 176: 139–148.
- Lashley T, Schott JM, Weston P, et al. Molecular biomarkers of Alzheimer's disease: progress and prospects. Dis Model Mech. 2018; 11(5).
- Levine JE, Povlishock JT, Becker DP. The morphological correlates of primate cerebrospinal fluid absorption. Brain Res. 1982; 241(1): 31–41.
- LibreTex. Anatomy and Physiology. https://med.libretexts.org/Bookshelves/Anatomy_and_Physiology (2020).
- Liktor-Busa E, Blawn KT, Kellohen KL, et al. Functional NHE1 expression is critical to blood brain barrier integrity and sumatriptan blood to brain uptake. PLoS One. 2020; 15(5): e0227463.
- Lin FR. Aquaporin and brain diseases. Bone. 2014; 23: 1–7.
- Lindvall M, Owman C, Lindvall M, et al. Histochemical, ultrastructural and functional evidence for a neurogenic control of cerebrospinal fluid production from the choroid plexus. Acta Physiol Scand Suppl. 1977; 452(4351): 77–86.
- Lorenzo AV, Taratuska A, Halperin JA. Suppression of cerebrospinal fluid (CSF) production by a Na+/K+ pump inhibitor extracted from human cerebrospinal fluid. Z Kinderchir. 1989; 44 Suppl 1: 24–26.
- Louveau A, Plog BA, Antila S, et al. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest. 2017; 127(9): 3210–3219.
- Louveau A, Smirnov I, Keyes TK, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015; 523(7560): 337–341.
- Love S, Saitoh T, Quijada S, et al. Alz-50, ubiquitin and tau immunoreactivity of neurofibrillary tangles, Pick bodies and Lewy bodies. J Neuropathol Exp Neurol. 1988; 47(4): 393–405.
- Ma Q, Schlegel F, Bachmann SB, et al. Lymphatic outflow of cerebrospinal fluid is reduced in glioma. Sci Rep. 2019; 9(1): 14815.
- Malinowska DH, Dziegielewska KM, Evans CA, et al. Proteins in cerebrospinal fluid and plasma of fetal sheep during development. J Physiol. 1980; 300: 441–455.
- Minta K, Brinkmalm G, Thelin EP, et al. Cerebrospinal fluid brevican and neurocan fragment patterns in human traumatic brain injury. Clin Chim Acta. 2021; 512: 74–83.
- Miyajima M, Arai H. Evaluation of the production and absorption of cerebrospinal fluid. Neurol Med Chir (Tokyo). 2015; 55(8): 647–656.
- Mogensen FLH, Delle C, Nedergaard M. The glymphatic system (en)during inflammation. Int J Mol Sci. 2021; 22(14).
- Mollanji R, Bozanovic-Sosic R, Zakharov A, et al. Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol Regul Integr Comp Physiol. 2002; 282(6): R1593–R1599.
- Obermeier B, Verma A, Ransohoff R. The blood–brain barrier. Handb Clin Neurol. 2016; 133: 39–59.
- Oshio K, Watanabe H, Song Y, et al. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J. 2005; 19(1): 76–78.
- Özevren H, Deveci E, Tuncer MC. Histopathological changes in the choroid plexus after traumatic brain injury in the rats: a histologic and immunohistochemical study. Folia Morphol. 2018; 77(4): 642–648.
- Pan Z, Yang G, He H, et al. Identification of cerebrospinal fluid microRNAs associated with leptomeningeal metastasis from lung adenocarcinoma. Front Oncol. 2020; 10: 387.
- Papaiconomou C, Bozanovic-Sosic R, Zakharov A, et al. Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol Regul Integr Comp Physiol. 2002; 283(4): R869–R876.
- Pollay M. The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res. 2010; 7: 9.
- Prasad GL. Steroids for delayed cerebral edema after traumatic brain injury. Surg Neurol Int. 2021; 12: 46.
- Preston D, Simpson S, Halm D. Activation of TRPV4 stimulates transepithelial ion flux in a porcine choroid plexus cell line. Am J Physiol Cell Physiol. 2018; 315(3): C357–C366.
- Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell Mol Life Sci. 2021; 78(6): 2429–2457.
- Qiu X, Ping S, Kyle M, et al. SCF + G-CSF treatment in the chronic phase of severe TBI enhances axonal sprouting in the spinal cord and synaptic pruning in the hippocampus. Acta Neuropathol Commun. 2021; 9(1): 63.
- Reinsfelt B, Ricksten SE, Zetterberg H, et al. Cerebrospinal fluid markers of brain injury, inflammation, and blood-brain barrier dysfunction in cardiac surgery. Ann Thorac Surg. 2012; 94(2): 549–555.
- Sachs JR, Zapadka ME, Elster AD. Orbital interstitial fluid: evidence of a potential pathway for extracranial cerebrospinal fluid absorption. J Comput Assist Tomogr. 2018; 42(4): 497–501.
- Sakka L, Coll G, Chazal J. Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis. 2011; 128(6): 309–316.
- Sandro DM, Fu Z, Kipnis J. The meningeal lymphatic system: a new player in neurophysiology. Neuron. 2018; 100(2): 375–388.
- Seehusen DA, Reeves MM, Fomin DA. Cerebrospinal fluid analysis. Am Fam Physician. 2003; 68(6): 1103–1108.
- Shaw LM, Arias J, Blennow K, et al. Appropriate use criteria for lumbar puncture and cerebrospinal fluid testing in the diagnosis of Alzheimer's disease. Alzheimers Dement. 2018; 14(11): 1505–1521.
- Shayanne AL, Lajud DA, Qiao P, et al. Sleep drives metabolite clearance from the adult. Bone. 2014; 23: 1–7.
- Sokołowski W, Barszcz K, Kupczyńska M, et al. Lymphatic drainage of cerebrospinal fluid in mammals — are arachnoid granulations the main route of cerebrospinal fluid outflow? Biol. 2018; 73(6): 563–568.
- Solár P, Zamani A, Kubíčková L, et al. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS. 2020; 17(1): 35.
- Spector R, Robert Snodgrass S, Johanson CE. A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp Neurol. 2015; 273: 57–68.
- Tcw J, Goate AM. Genetics of β-Amyloid precursor protein in Alzheimer's disease. Cold Spring Harb Perspect Med. 2017; 7(6).
- Tripathi RC. The functional morphology of the outflow systems of ocular and cerebrospinal fluids. Exp Eye Res. 1977; 25 Suppl: 65–116.
- Unterberg AW, Stover J, Kress B, et al. Edema and brain trauma. Neuroscience. 2004; 129(4): 1021–1029.
- Verbeek MM, Leen WG, Willemsen MA, et al. Hourly analysis of cerebrospinal fluid glucose shows large diurnal fluctuations. J Cereb Blood Flow Metab. 2016; 36(5): 899–902.
- Vogh BP, Godman DR. Addition of the effects of norepinephrine and acetazolamide to decrease formation of cerebrospinal fluid. J Pharmacol Exp Ther. 1984; 229(1): 207–209.
- Wang KK, Yang Z, Shi Y, et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn. 2018; 18(2): 165–180.
- Wolstenholme GEW, O'Connor CM. The cerebrospinal: fluid — production, circulation and absorption. Little, Brown and Company, Boston 1958.
- Xiang J, Routhe LJ, Wilkinson DA, et al. The choroid plexus as a site of damage in hemorrhagic and ischemic stroke and its role in responding to injury. Fluids Barriers CNS. 2017; 14(1): 8.
- Yanagawa H, Chung SH, Ogawa Y, et al. Protein anatomy: C-tail region of human tau protein as a crucial structural element in Alzheimer's paired helical filament formation in vitro. Biochemistry. 1998; 37(7): 1979–1988.
- Zakharov A, Papaiconomou C, Djenic J, et al. Lymphatic cerebrospinal fluid absorption pathways in neonatal sheep revealed by subarachnoid injection of Microfil. Neuropathol Appl Neurobiol. 2003; 29(6): 563–573.