open access

Vol 82, No 4 (2023)
Original article
Submitted: 2023-09-15
Accepted: 2023-10-18
Published online: 2023-10-30
Get Citation

Topography of the infraorbital foramen in human skulls originating from different time periods

A. Gawlikowska-Sroka1, Ł. Stocki2, J. Szczurowski3, W. Nowaczewska4
·
Pubmed: 37957943
·
Folia Morphol 2023;82(4):875-884.
Affiliations
  1. Department of Anatomy, Pomeranian Medical University, Szczecin, Poland
  2. Orion Dental Wawrzyniak and Stocki Dental Clinic, Szczecin, Poland
  3. Department of Anthropology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
  4. Department of Human Biology, University of Wroclaw, Poland

open access

Vol 82, No 4 (2023)
ORIGINAL ARTICLES
Submitted: 2023-09-15
Accepted: 2023-10-18
Published online: 2023-10-30

Abstract

Background: The infraorbital foramen (IOF) is present on the maxilla under the
infraorbital margin. Its identification is essential in various surgical procedures. The
main aim of this study was the morphometric assessment of the position of the right
and left infraorbital foramina in relation to specific structural elements of the facial
skeleton, their width and direction, and also the determination of the location of
these foramina above maxillary teeth in examined male skulls (belonging to European
populations) dated to the beginning of the 20th century and the medieval and
post-medieval period. This aim concerned also the assessment of the symmetry of
the examined foramina (their location and size). An additional goal was to determine
differences between the cranial samples concerning the analysed traits.
Materials and methods: The six metric and two non-metric traits concerning the
IOF were collected from the male cranial samples including modern skulls (n = 87),
the medieval and post-medieval skulls (from 13th centuries and 15–17th centuries,
respectively; n = 47) obtained from archaeological excavations in Wroclaw, and the
sample of the medieval skulls (11–13th centuries, n = 100) from Sypniewo. The sex
and age of the specimens were determined using the standard methodology. The
appropriate statistical analysis was performed.
Results: Significant differences were established for three traits (taken from the left
and right side) in the case of modern skulls (diameter of IOF, its distance to the midline,
and zygomaticomaxillary suture) and one in the case of medieval skulls from Sypniewo
(distance to the midline). In all of the cranial samples IOF most frequently occurred above
the first upper molar. The greater diameter of IOF and its shorter distance to the alveolar
crest and nasal notch were observed in non-modern skulls compared to modern skulls.
Conclusions: The results of this study provide new additional data on the topography of
IOF and its asymmetry, confirm the presence of both geographical and chronological differences
between populations, and can be used in dental practice, and forensic odontology
in the analysis of archaeological bone materials.

Abstract

Background: The infraorbital foramen (IOF) is present on the maxilla under the
infraorbital margin. Its identification is essential in various surgical procedures. The
main aim of this study was the morphometric assessment of the position of the right
and left infraorbital foramina in relation to specific structural elements of the facial
skeleton, their width and direction, and also the determination of the location of
these foramina above maxillary teeth in examined male skulls (belonging to European
populations) dated to the beginning of the 20th century and the medieval and
post-medieval period. This aim concerned also the assessment of the symmetry of
the examined foramina (their location and size). An additional goal was to determine
differences between the cranial samples concerning the analysed traits.
Materials and methods: The six metric and two non-metric traits concerning the
IOF were collected from the male cranial samples including modern skulls (n = 87),
the medieval and post-medieval skulls (from 13th centuries and 15–17th centuries,
respectively; n = 47) obtained from archaeological excavations in Wroclaw, and the
sample of the medieval skulls (11–13th centuries, n = 100) from Sypniewo. The sex
and age of the specimens were determined using the standard methodology. The
appropriate statistical analysis was performed.
Results: Significant differences were established for three traits (taken from the left
and right side) in the case of modern skulls (diameter of IOF, its distance to the midline,
and zygomaticomaxillary suture) and one in the case of medieval skulls from Sypniewo
(distance to the midline). In all of the cranial samples IOF most frequently occurred above
the first upper molar. The greater diameter of IOF and its shorter distance to the alveolar
crest and nasal notch were observed in non-modern skulls compared to modern skulls.
Conclusions: The results of this study provide new additional data on the topography of
IOF and its asymmetry, confirm the presence of both geographical and chronological differences
between populations, and can be used in dental practice, and forensic odontology
in the analysis of archaeological bone materials.

Get Citation

Keywords

infraorbital foramen, palaeoanthropology, anatomy, asymmetry, maxillary nerve, trigeminal nerve, infraorbital nerve, infraorbital canal, forensic medicine

About this article
Title

Topography of the infraorbital foramen in human skulls originating from different time periods

Journal

Folia Morphologica

Issue

Vol 82, No 4 (2023)

Article type

Original article

Pages

875-884

Published online

2023-10-30

Page views

686

Article views/downloads

371

DOI

10.5603/fm.97440

Pubmed

37957943

Bibliographic record

Folia Morphol 2023;82(4):875-884.

Keywords

infraorbital foramen
palaeoanthropology
anatomy
asymmetry
maxillary nerve
trigeminal nerve
infraorbital nerve
infraorbital canal
forensic medicine

Authors

A. Gawlikowska-Sroka
Ł. Stocki
J. Szczurowski
W. Nowaczewska

References (65)
  1. Aggarwal A, Kaur H, Gupta T, et al. Anatomical study of the infraorbital foramen: A basis for successful infraorbital nerve block. Clin Anat. 2015; 28(6): 753–760.
  2. Agthong S, Huanmanop T, Chentanez V. Anatomical variations of the supraorbital, infraorbital, and mental foramina related to gender and side. J Oral Maxillofac Surg. 2005; 63(6): 800–804.
  3. Apinhasmit W, Chompoopong S, Methathrathip D, et al. Supraorbital Notch/Foramen, Infraorbital Foramen and Mental Foramen in Thais: anthropometric measurements and surgical relevance. J Med Assoc Thai. 2006; 89(5): 675–682.
  4. Atwood DA, Coy WA. Clinical, cephalometric, and densitometric study of reduction of residual ridges. J Prosthet Dent. 1971; 26(3): 280–295.
  5. Aziz SR, Marchena JM, Puran A. Anatomic characteristics of the infraorbital foramen: a cadaver study. J Oral Maxillofac Surg. 2000; 58(9): 992–996.
  6. Bahşi I, Orhan M, Kervancıoğlu P, et al. Morphometric evaluation and surgical implications of the infraorbital groove, canal and foramen on cone-beam computed tomography and a review of literature. Folia Morphol. 2019; 78(2): 331–343.
  7. Bishara SE, Burkey PS, Kharouf JG. Dental and facial asymmetries: a review. Angle Orthod. 1994; 64(2): 89–98, doi: 10.1043/0003-3219(1994)064<0089:DAFAAR>2.0.CO;2.
  8. Bressan C, Geuna S, Malerba G, et al. Descriptive and topographic anatomy of the accessory infraorbital foramen. Clinical implications in maxillary surgery. Minerva Stomatol. 2004; 53(9): 495–505.
  9. Brothwell DR. Digging Up Bones. Natural History Museum Publications, London 1981.
  10. Buikstra J, Ubelaker DH. Standards for data collection from human skeletal remains. Arkansas Archeological Survey Research, 1994, Series 44.
  11. Charazińska Z. Obserwacje własne asymetrii twarzy uwarunkowanej zmianami w budowie czaszki i ustawienia kręgów szyjnych. Czas Stomat. 1973; 26(9): 1019–1026.
  12. Chung MS, Kim HJ, Kang HS, et al. Locational relationship of the supraorbital notch or foramen and infraorbital and mental foramina in Koreans. Acta Anat (Basel). 1995; 154(2): 162–166.
  13. Cutright B, Quillopa N, Schubert W. An anthropometric analysis of the key foramina for maxillofacial surgery. J Oral Maxillofac Surg. 2003; 61(3): 354–357.
  14. Czerwiński F, Sulisz T, Teul I, et al. Ocena morfologiczna zatok czołowych na podstawie zdjęć radiologicznych czaszek średniowiecznych łczesnych. Pol Przegl Radiol. 1996; 61(4): 363–366.
  15. Dixit SG, Kaur J, Nayyar AK, et al. Morphometric analysis and anatomical variations of infraorbital foramen: a study in adult North Indian population. Morphologie. 2014; 98(323): 166–170.
  16. Fattore LD, Fine L, Edmonds DC. The hollow denture: an alternative treatment for atrophic maxillae. J Prosthet Dent. 1988; 59(4): 514–516.
  17. Ferembach D, Schwindezky M, Stoukal M. Recommendations for age and sex diagnoses of skeletons. J Hum Evol. 1980; 9(7): 517–549.
  18. Fields SJ, Spiers M, Hershkovitz I, et al. Reliability of reliability coefficients in the estimation of asymmetry. Am J Phys Anthropol. 1995; 96(1): 83–87.
  19. Florkowski A. Zmiany kierunkowe wybranych cech kraniometrycznych we wczesnośredniowiecznym Gruczynie. Człowiek w czasie i przestrzeni. Gdańsk. 1993: 313–317.
  20. Gawlikowska A, Szczurowski J, Czerwiński F, et al. Analysis of skull asymmetry in different historical periods using radiological examinations. Pol J Radiol. 2007; 72(4): 35–43.
  21. Gawlikowska A, Szczurowski J, Czerwiński F, et al. Analysis of skull asymmetry in different historical periods using radiological examinations. Pol J Radiol. 2007; 72(4): 35–43.
  22. Gawlikowska-Sroka AK, Stocki L, Szczurowski J, et al. Topography of the mental foramen in human skulls originating from different time periods. Homo. 2013; 64(4): 286–295.
  23. Gawlikowska-Sroka A, Szczurowski J, Kwiatkowska B, et al. Concha Bullosa in Paleoanthropological Material. Adv Exp Med Biol. 2016; 952: 65–73.
  24. Gawlikowska-Sroka A. [Methods for the assessment of skull asymmetry on radiograms]. Ann Acad Med Stetin. 2009; 55(3): 36–39.
  25. Golusik K, Sarul M, Rzeszut Ł, et al. Żuchwa ludzka w procesie ewolucji. Dent Med Probl. 2005; 42(1): 103–109.
  26. Grayson BH, McCarthy JG, Bookstein F. Analysis of craniofacial asymmetry by multiplane cephalometry. Am J Orthod. 1983; 84(3): 217–224.
  27. Gupta T. Localization of important facial foramina encountered in maxillo-facial surgery. Clin Anat. 2008; 21(7): 633–640.
  28. Harvati K, Weaver T. Human cranial anatomy and the differential preservation of population history and climate signatures. Anat Rec A Discov Mol Cell Evol Biol. 2006; 288A(12): 1225–1233.
  29. Hindy AM, Abdel-Raouf F. A study of infraorbital foramen, canal and nerve in adult Egyptians. Egypt Dent J. 1993; 39(4): 573–580.
  30. Huanmanop T, Agthong S, Chentanez V. Surgical anatomy of fissures and foramina in the orbits of Thai adults. J Med Assoc Thai. 2007; 90(11): 2383–2391.
  31. Hublin JJ, Ben-Ncer A, Bailey SE, et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature. 2017; 546(7657): 289–292,.
  32. Hwang K, Lee SJ, Kim SY, et al. Frequency of existence, numbers, and location of the accessory infraorbital foramen. J Craniofac Surg. 2015; 26(1): 274–276.
  33. Kadanov D, Iordanov I, Aleksandrova N. [Symmetry and asymmetry of the orbital opening in Bulgarians]. Eksp Med Morfol. 1977; 16(1): 12–18.
  34. Kamburoğlu K, Kiliç C, Ozen T, et al. Measurements of mandibular canal region obtained by cone-beam computed tomography: a cadaveric study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009; 107(2): e34–e42.
  35. Karakaş P, Bozkir MG, Oguz O. Morphometric measurements from various reference points in the orbit of male Caucasians. Surg Radiol Anat. 2003; 24(6): 358–362.
  36. Kazkayasi M, Batay F, Bademci G, et al. The morphometric and cephalometric study of anterior cranial landmarks for surgery. Minim Invasive Neurosurg. 2008; 51(1): 21–25.
  37. Kazkayasi M, Ergin A, Ersoy M, et al. Certain anatomical relations and the precise morphometry of the infraorbital foramen--canal and groove: an anatomical and cephalometric study. Laryngoscope. 2001; 111(4 Pt 1): 609–614.
  38. Kazkayasi M, Ergin A, Ersoy M, et al. Microscopic anatomy of the infraorbital canal, nerve, and foramen. Otolaryngol Head Neck Surg. 2003; 129(6): 692–697.
  39. Kercz TM, Kuroszczyk M. Powikłania znieczulenia miejscowego a zmienność anatomiczna twarzoczaszki. e-Dentico. 2007; 1: 28–32.
  40. Koury ME, Epker BN. Maxillofacial esthetics: anthropometrics of the maxillofacial region. J Oral Maxillofac Surg. 1992; 50(8): 806–820.
  41. Lee UY, Nam SH, Han SH, et al. Morphological characteristics of the infraorbital foramen and infraorbital canal using three-dimensional models. Surg Radiol Anat. 2006; 28(2): 115–120.
  42. Leo JT, Cassell MD, Bergman RA. Variation in human infraorbital nerve, canal and foramen. Ann Anat. 1995; 177(1): 93–95.
  43. Lieberman DE, McBratney BM, Krovitz G. The evolution and development of cranial form in Homosapiens. Proc Natl Acad Sci U S A. 2002; 99(3): 1134–1139.
  44. Mackiewicz B, Prośba-Mackiewicz M, et al. Uwarunkowania kierunku rozwoju twarzoczaszkłczesnego człowieka. Człowiek w czasie i przestrzeni. Gdańsk. 1993: 112–115.
  45. Mahajan A, Verma R, Razdan SK, et al. Morphological and morphometric relations of infraorbital foramen in north indian population. Cureus. 2023; 15(2): e34525.
  46. Malinowski A, Bożiłow W. Wskaźniki proporcji. W: Podstawy antropometrii. Metody, techniki, normy. Red. Gniazdowska J. Wydawnictwo Naukowe PWN, Warszawa 1997: 182–190.
  47. Malinowski A, Strzałko J. Antropologia. Wydawnictwo Naukowe PWN, Warszawa 1985.
  48. Malinowski A. Czynniki działające na rozwój i kształt czaszki. Auksologia a promocja zdrowia. Kielce. 1997: 89–96.
  49. Nardi NM, Alvarado AC, Schaefer TJ. Infraorbital Nerve Block. 2023 Aug 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. .
  50. Nowaczewska W, Dabrowski P, Kuźmiński Ł. Morphological adaptation to climate in modern Homo sapiens crania: the importance of basicranial breadth. Coll Antropol. 2011; 35(3): 625–636.
  51. Ozola B, Slaidina A, Laurina L, et al. The influence of bone mineral density and body mass index on resorption of edentulous jaws. Stomatologija. 2011; 13(1): 19–24.
  52. Rae TC, Vidarsdóttir US, Jeffery N, et al. Developmental response to cold stress in cranial morphology of Rattus: implications for the interpretation of climatic adaptation in fossil hominins. Proc Biol Sci. 2006; 273(1601): 2605–2610.
  53. Rahman M, Richter EO, Osawa S, et al. Anatomic study of the infraorbital foramen for radiofrequency neurotomy of the infraorbital nerve. Neurosurgery. 2009; 64(5 Suppl 2): 423–427.
  54. Rossi M, Ribeiro E, Smith R. Craniofacial asymmetry in development: an anatomical study. Angle Orthod. 2003; 73(4): 381–385, doi: 10.1043/0003-3219(2003)073<0381:CAIDAA>2.0.CO;2.
  55. Skvarilová B. Facial asymmetry: an X-ray study. Acta Chir Plast. 1994; 36(3): 89–91.
  56. Sokhn S, Challita R, Challita A, et al. The infraorbital foramen in a sample of the lebanese population: a radiographic study. Cureus. 2019; 11(12): e6381.
  57. Stanisz A. Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny. Tom 1. Statystyki podstawowe. StatSofft Polska Sp. z o o. , Kraków 2006.
  58. Suntiruamjairucksa J, Chentanez V. Localization of infraorbital foramen and accessory infraorbital foramen with reference to facial bony landmarks: predictive method and its accuracy. Anat Cell Biol. 2022; 55(1): 55–62.
  59. Szczurowski J. Cechy niemetryczne czaszek z Czeladzi Wielkiej. W: Studia Antropologiczne T 2 Wrocław. 1995; 127: 65–80.
  60. Teul I, Czerwiński F, Gawlikowska A, et al. Asymmetry of the ovale and spinous foramina in mediaeval and contemporary skulls in radiological examinations. Folia Morphol. 2002; 61(3): 147–152.
  61. Tomaszewska A, Zelaźniewicz A. Morphology and morphometry of the meningo-orbital foramen as a result of plastic responses to the ambient temperature and its clinical relevance. J Craniofac Surg. 2014; 25(3): 1033–1037.
  62. Vasconcelos Jd, Avila GB, Ribeiro JC, et al. Inferior alveolar nerve transposition with involvement of the mental foramen for implant placement. Med Oral Patol Oral Cir Bucal. 2008; 13(11): E722–E725.
  63. Westerholm N. The determination by orthopantomographic measurement of bone resorption in the bone of the jaws (processus alveolaris). Odontol Tidskr. 1966; 74(1): 52–60.
  64. Zhang KR, Blandford AD, Hwang CJ, et al. Anatomic variations of the infraorbital foramen in caucasian versus african american skulls. Ophthalmic Plast Reconstr Surg. 2019; 35(1): 25–28.
  65. Żyszko A. Przyczynek zagadnienia zmian w narządzie żucia w przypadku asymetrii twarzo-czaszki. Czas Stomat. 1974; 27(5): 655–661.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., Grupa Via Medica, Świętokrzyska 73, 80–180 Gdańsk, Poland

tel.: +48 58 320 94 94, faks: +48 58 320 94 60, e-mail: viamedica@viamedica.pl