open access

Vol 80, No 4 (2021)
Review article
Submitted: 2021-08-20
Accepted: 2021-09-10
Published online: 2021-09-15
Get Citation

Can the kisspeptin help us in the understanding of pathology of some neurodegenerative brain diseases?

N. Melka1, A. Pszczolinska1, I. Klejbor23, B. Ludkiewicz1, P. Kowiański13, J. Moryś34
Pubmed: 34545559
Folia Morphol 2021;80(4):756-765.
  1. Department of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdansk, Poland
  2. Department of Anatomy, Jan Kochanowski University of Kielce, Poland
  3. Department of Clinical Anatomy and Physiology, Institute of Health Sciences, Pomeranian University of Slupsk, Poland
  4. Department of Normal Anatomy, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Poland

open access

Vol 80, No 4 (2021)
Submitted: 2021-08-20
Accepted: 2021-09-10
Published online: 2021-09-15


It is already known that the discovery of kisspeptin was a revolutionary step in the understanding of neuroendocrine regulation of reproduction. Kisspeptin is one of the main moderators of the gonadotropic axis, but the kisspeptin gene is known to be expressed in various regions of the central nervous system. The activity of kisspeptin is not limited to hypothalamic pituitary gonadal axis; it participates in the regulation of multiple neuronal circuits in the limbic system. The limbic system is a part of the brain involved in behavioural and emotional reactions, and disturbances in its functioning may be the source of some psychiatric as well as degenerative disorders. In the present review, we summarise the current state of knowledge concerning the role of kisspeptin in the limbic system and a new hope for the treatment of disturbances in its functioning.


It is already known that the discovery of kisspeptin was a revolutionary step in the understanding of neuroendocrine regulation of reproduction. Kisspeptin is one of the main moderators of the gonadotropic axis, but the kisspeptin gene is known to be expressed in various regions of the central nervous system. The activity of kisspeptin is not limited to hypothalamic pituitary gonadal axis; it participates in the regulation of multiple neuronal circuits in the limbic system. The limbic system is a part of the brain involved in behavioural and emotional reactions, and disturbances in its functioning may be the source of some psychiatric as well as degenerative disorders. In the present review, we summarise the current state of knowledge concerning the role of kisspeptin in the limbic system and a new hope for the treatment of disturbances in its functioning.

Get Citation


kisspeptin, hypothalamus, limbic system, neurodegenerative disease

About this article

Can the kisspeptin help us in the understanding of pathology of some neurodegenerative brain diseases?


Folia Morphologica


Vol 80, No 4 (2021)

Article type

Review article



Published online


Page views


Article views/downloads






Bibliographic record

Folia Morphol 2021;80(4):756-765.


limbic system
neurodegenerative disease


N. Melka
A. Pszczolinska
I. Klejbor
B. Ludkiewicz
P. Kowiański
J. Moryś

References (110)
  1. Adachi S, Yamada S, Takatsu Y, et al. Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J Reprod Dev. 2007; 53(2): 367–378.
  2. Adekunbi DA, Li XF, Lass G, et al. Kisspeptin neurones in the posterodorsal medial amygdala modulate sexual partner preference and anxiety in male mice. J Neuroendocrinol. 2018; 30(3): e12572.
  3. Aggarwal S, Tang C, Sing K, et al. Medial amygdala kiss1 neurons mediate female pheromone stimulation of luteinizing hormone in male mice. Neuroendocrinology. 2019; 108(3): 172–189.
  4. Aguilar Martínez N, Aguado Carrillo G, Saucedo Alvarado PE, et al. Clinical importance of olfactory function in neurodegenerative diseases. Rev Médica del Hosp Gen México. 2018; 81(4): 268–275.
  5. Andreozzi F, Mannino GC, Mancuso E, et al. Plasma kisspeptin levels are associated with insulin secretion in nondiabetic individuals. PLoS One. 2017; 12(6): e0179834.
  6. Arai AC, Orwig N. Factors that regulate KiSS1 gene expression in the hippocampus. Brain Res. 2008; 1243: 10–18.
  7. Arai AC, Xia YF, Suzuki E, et al. Cancer metastasis-suppressing peptide metastin upregulates excitatory synaptic transmission in hippocampal dentate granule cells. J Neurophysiol. 2005; 94(5): 3648–3652.
  8. Arai AC. The role of kisspeptin and GPR54 in the hippocampus. Peptides. 2009; 30(1): 16–25.
  9. Babaei P, Pourmir M, Babaei P, et al. Kisspeptin-13 ameliorates memory impairment induced by streptozotocin in male rats via cholinergic system. Physiology and Pharmacology. 2016; 20(1): 38–47.
  10. Bhattacharya M, Babwah AV. Kisspeptin: beyond the brain. Endocrinology. 2015; 156(4): 1218–1227.
  11. Boehm U, Zou Z, Buck LB. Feedback loops link odor and pheromone signaling with reproduction. Cell. 2005; 123(4): 683–695.
  12. Brown RE, Imran SA, Ur E, et al. KiSS-1 mRNA in adipose tissue is regulated by sex hormones and food intake. Mol Cell Endocrinol. 2008; 281(1-2): 64–72.
  13. Castellano JM, Bentsen AH, Mikkelsen JD, et al. Kisspeptins: bridging energy homeostasis and reproduction. Brain Res. 2010; 1364: 129–138.
  14. Cayre M, Canoll P, Goldman JE. Cell migration in the normal and pathological postnatal mammalian brain. Prog Neurobiol. 2009; 88(1): 41–63.
  15. Cheng G, Coolen LM, Padmanabhan V, et al. The kisspeptin/neurokinin B/dynorphin (KNDy) cell population of the arcuate nucleus: sex differences and effects of prenatal testosterone in sheep. Endocrinology. 2010; 151(1): 301–311.
  16. Chilumuri A, Ashioti M, Nercessian AN, et al. Immunolocalization of kisspeptin associated with amyloid-β deposits in the pons of an Alzheimer's disease patient. J Neurodegener Dis. 2013; 2013: 879710.
  17. Ciaramella V, Della Corte CM, Ciardiello F, et al. Kisspeptin and cancer: molecular interaction, biological functions, and future perspectives. Front Endocrinol (Lausanne). 2018; 9: 115.
  18. Clarke H, Dhillo WS, Jayasena CN. Comprehensive review on kisspeptin and its role in reproductive disorders. Endocrinol Metab (Seoul). 2015; 30(2): 124–141.
  19. Clarkson J, Herbison AE. Dual phenotype kisspeptin-dopamine neurones of the rostral periventricular area of the third ventricle project to gonadotrophin-releasing hormone neurones. J Neuroendocrinol. 2011; 23(4): 293–301.
  20. Clarkson J, Herbison AE. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology. 2006; 147(12): 5817–5825.
  21. Clarkson J, d'Anglemont de Tassigny X, Colledge WH, et al. Distribution of kisspeptin neurones in the adult female mouse brain. J Neuroendocrinol. 2009; 21(8): 673–682.
  22. Comninos AN, Anastasovska J, Sahuri-Arisoylu M, et al. Kisspeptin signaling in the amygdala modulates reproductive hormone secretion. Brain Struct Funct. 2016; 221(4): 2035–2047.
  23. Comninos AN, Demetriou L, Wall MB, et al. Modulations of human resting brain connectivity by kisspeptin enhance sexual and emotional functions. JCI Insight. 2018; 3(20).
  24. Comninos AN, Wall MB, Demetriou L, et al. Kisspeptin modulates sexual and emotional brain processing in humans. J Clin Invest. 2017; 127(2): 709–719.
  25. Comninos AN, Yang L, O'Callaghan J, et al. Kisspeptin modulates gamma-aminobutyric acid levels in the human brain. Psychoneuroendocrinology. 2021; 129: 105244.
  26. Cravo RM, Margatho LO, Osborne-Lawrence S, et al. Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience. 2011; 173: 37–56.
  27. Csabafi K, Jászberényi M, Bagosi Z, et al. Effects of kisspeptin-13 on the hypothalamic-pituitary-adrenal axis, thermoregulation, anxiety and locomotor activity in rats. Behav Brain Res. 2013; 241: 56–61.
  28. d'Anglemont de Tassigny X, Fagg LA, Dixon JPC, et al. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci U S A. 2007; 104(25): 10714–10719.
  29. De Bond JAP, Smith JT. Kisspeptin and energy balance in reproduction. Reproduction. 2014; 147(3): R53–R63.
  30. de Roux N, Genin E, Carel JC, et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A. 2003; 100(19): 10972–10976.
  31. Delmas S, Porteous R, Bergin DH, et al. Altered aspects of anxiety-related behavior in kisspeptin receptor-deleted male mice. Sci Rep. 2018; 8(1): 2794.
  32. Desroziers E, Mikkelsen J, Simonneaux V, et al. Mapping of kisspeptin fibres in the brain of the pro-oestrous rat. J Neuroendocrinol. 2010; 22(10): 1101–1112.
  33. Devere R. Smell and taste in clinical neurology: Five new things. Neurol Clin Pract. 2012; 2(3): 208–214.
  34. Di Giorgio NP, Semaan SJ, Kim J, et al. Impaired GABAB receptor signaling dramatically up-regulates Kiss1 expression selectively in nonhypothalamic brain regions of adult but not prepubertal mice. Endocrinology. 2014; 155(3): 1033–1044.
  35. Doty R. Olfactory dysfunction in Parkinson disease. Nat Rev Neurol. 2012; 8(6): 329–339.
  36. Franceschini I, Lomet D, Cateau M, et al. Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha. Neurosci Lett. 2006; 401(3): 225–230.
  37. Franssen D, Tena-Sempere M. The kisspeptin receptor: A key G-protein-coupled receptor in the control of the reproductive axis. Best Pract Res Clin Endocrinol Metab. 2018; 32(2): 107–123.
  38. Funes S, Hedrick JA, Vassileva G, et al. The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun. 2003; 312(4): 1357–1363.
  39. Gibula-Tarlowska E, Kotlinska JH. Kissorphin improves spatial memory and cognitive flexibility impairment induced by ethanol treatment in the Barnes maze task in rats. Behav Pharmacol. 2020; 31(2&3): 272–282.
  40. Goncharova ND. Stress responsiveness of the hypothalamic-pituitary-adrenal axis: age-related features of the vasopressinergic regulation. Front Endocrinol (Lausanne). 2013; 4: 26.
  41. Goodman RL, Lehman MN, Smith JT, et al. Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology. 2007; 148(12): 5752–5760.
  42. Gottsch ML, Cunningham MJ, Smith JT, et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology. 2004; 145(9): 4073–4077.
  43. Han SK, Gottsch ML, Lee KJ, et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci. 2005; 25(49): 11349–11356.
  44. Handa RJ, Burgess LH, Kerr JE, et al. Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav. 1994; 28(4): 464–476.
  45. Harter CJL, Kavanagh GS, Smith JT. The role of kisspeptin neurons in reproduction and metabolism. J Endocrinol. 2018; 238(3): R173–R183.
  46. Hellier V, Brock O, Candlish M, et al. Female sexual behavior in mice is controlled by kisspeptin neurons. Nat Commun. 2018; 9(1): 400.
  47. Herbison AE, Theodosis DT. Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-releasing hormone in the male and female rat. Neuroscience. 1992; 50(2): 283–298.
  48. Hrabovszky E, Ciofi P, Vida B, et al. The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. Eur J Neurosci. 2010; 31(11): 1984–1998.
  49. Hrabovszky E, Borsay BÁ, Rácz K, et al. Substance P immunoreactivity exhibits frequent colocalization with kisspeptin and neurokinin B in the human infundibular region. PLoS One. 2013; 8(8): e72369.
  50. Hussain MA, Song WJ, Wolfe A, et al. Glucagon regulates hepatic kisspeptin to impair insulin secretion. Cell Metab. 2014; 19(4): 667–681.
  51. Irwig MS, Fraley GS, Smith JT, et al. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology. 2004; 80(4): 264–272.
  52. Izzi E, Comninos A, Clarke S, et al. Kisspeptin stimulates insulin secretion and modulates serum metabolites in humans. Endocrine Abstracts. 2018.
  53. Izzi-Engbeaya C, Comninos AN, Clarke SA, et al. The effects of kisspeptin on β-cell function, serum metabolites and appetite in humans. Diabetes Obes Metab. 2018; 20(12): 2800–2810.
  54. Jiang JH, He Z, Peng YL, et al. Kisspeptin-13 enhances memory and mitigates memory impairment induced by Aβ1-42 in mice novel object and object location recognition tasks. Neurobiol Learn Mem. 2015; 123: 187–195.
  55. Kalló I, Mohácsik P, Vida B, et al. A novel pathway regulates thyroid hormone availability in rat and human hypothalamic neurosecretory neurons. PLoS One. 2012; 7(6): e37860.
  56. Kauffman AS. Coming of age in the kisspeptin era: sex differences, development, and puberty. Mol Cell Endocrinol. 2010; 324(1-2): 51–63.
  57. Keshavarzi S, Sullivan RKP, Ianno DJ, et al. Functional properties and projections of neurons in the medial amygdala. J Neurosci. 2014; 34(26): 8699–8715.
  58. Kevetter GA, Winans SS. Connections of the corticomedial amygdala in the golden hamster. I. Efferents of the "vomeronasal amygdala". J Comp Neurol. 1981; 197(1): 81–98.
  59. Khonacha SE, Janahmadi M, Motamedi F. Kisspeptin-13 Improves Spatial Memory Consolidation and Retrieval against Amyloid-β Pathology. Iran J Pharm Res. 2019; 18(Suppl1): 169–181.
  60. Kim J, Semaan SJ, Clifton DK, et al. Regulation of Kiss1 expression by sex steroids in the amygdala of the rat and mouse. Endocrinology. 2011; 152(5): 2020–2030.
  61. Kim TH, Cho SG. Kisspeptin inhibits cancer growth and metastasis via activation of EIF2AK2. Mol Med Rep. 2017; 16(5): 7585–7590.
  62. Lee DK, Nguyen T, O'Neill GP, et al. Discovery of a receptor related to the galanin receptors. FEBS Lett. 1999; 446(1): 103–107.
  63. Lee JH, Miele ME, Hicks DJ, et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst. 1996; 88(23): 1731–1737.
  64. Lee JH, Welch DR. Identification of highly expressed genes in metastasis-suppressed chromosome 6/human malignant melanoma hybrid cells using subtractive hybridization and differential display. Int J Cancer. 1997; 71(6): 1035–1044, doi: 10.1002/(sici)1097-0215(19970611)71:6<1035::aid-ijc20>;2-b.
  65. Lehman MN, Hileman SM, Goodman RL. Neuroanatomy of the kisspeptin signaling system in mammals: comparative and developmental aspects. Adv Exp Med Biol. 2013; 784: 27–62.
  66. Lehman MN, Merkley CM, Coolen LM, et al. Anatomy of the kisspeptin neural network in mammals. Brain Res. 2010; 1364: 90–102.
  67. Martínez-Fuentes AJ, Molina M, Vázquez-Martínez R, et al. Expression of functional KISS1 and KISS1R system is altered in human pituitary adenomas: evidence for apoptotic action of kisspeptin-10. Eur J Endocrinol. 2011; 164(3): 355–362.
  68. Milton NGN, Chilumuri A, Rocha-Ferreira E, et al. Kisspeptin prevention of amyloid-β peptide neurotoxicity in vitro. ACS Chem Neurosci. 2012; 3(9): 706–719.
  69. Nathan FM, Ogawa S, Parhar IS. Kisspeptin1 modulates odorant-evoked fear response via two serotonin receptor subtypes (5-HT1A and 5-HT2) in zebrafish. J Neurochem. 2015; 133(6): 870–878.
  70. Nathan FM, Ogawa S, Parhar IS. Neuronal connectivity between habenular glutamate-kisspeptin1 co-expressing neurons and the raphe 5-HT system. J Neurochem. 2015; 135(4): 814–829.
  71. Navarro VM. Metabolic regulation of kisspeptin: the link between energy balance and reproduction. Nat Rev Endocrinol. 2020; 16(8): 407–420.
  72. Neuman-Lee L, Greives T, Hopkins GR, et al. The role of the kisspeptin system in regulation of the reproductive endocrine axis and territorial behavior in male side-blotched lizards (Uta stansburiana). Horm Behav. 2017; 89: 48–54.
  73. Ogawa S, Nathan FM, Parhar IS. Habenular kisspeptin modulates fear in the zebrafish. Proc Natl Acad Sci U S A. 2014; 111(10): 3841–3846.
  74. Ogawa S, Parhar IS. Biological significance of kisspeptin-Kiss 1 receptor signaling in the habenula of teleost species. Front Endocrinol (Lausanne). 2018; 9: 222.
  75. Pandya M, Altinay M, Malone DA, et al. Where in the brain is depression? Curr Psychiatry Rep. 2012; 14(6): 634–642.
  76. Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl). 2005; 177(3): 245–255.
  77. Pineda R, Aguilar E, Pinilla L, et al. Physiological roles of the kisspeptin/GPR54 system in the neuroendocrine control of reproduction. Prog Brain Res. 2010; 181: 55–77.
  78. Pineda R, Plaisier F, Millar RP, et al. Amygdala kisspeptin neurons: putative mediators of olfactory control of the gonadotropic axis. Neuroendocrinology. 2017; 104(3): 223–238.
  79. Porteous R, Petersen SL, Yeo SH, et al. Kisspeptin neurons co-express met-enkephalin and galanin in the rostral periventricular region of the female mouse hypothalamus. J Comp Neurol. 2011; 519(17): 3456–3469.
  80. Preston AR, Eichenbaum H. Interplay of hippocampus and prefrontal cortex in memory. Curr Biol. 2013; 23(17): R764–R773.
  81. Rajmohan V, Mohandas E. The limbic system. Indian J Psychiatry. 2007; 49(2): 132–139.
  82. Roa J, Tena-Sempere M. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators. Mol Cell Endocrinol. 2014; 397(1-2): 4–14.
  83. Roseweir AK, Kauffman AS, Smith JT, et al. Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. J Neurosci. 2009; 29(12): 3920–3929.
  84. Rumpler É. Identification of species-specific and general features in the anatomy of the kisspeptin neuron system. PhD Thesis Semmelweis University, Budapest 2021.
  85. Saedi S, Khoradmehr A, Mohammad Reza JS, et al. The role of neuropeptides and neurotransmitters on kisspeptin/kiss1r-signaling in female reproduction. J Chem Neuroanat. 2018; 92: 71–82.
  86. Sanchez-Garrido MA, Tena-Sempere M. Metabolic control of puberty: roles of leptin and kisspeptins. Horm Behav. 2013; 64(2): 187–194.
  87. Sarkar S, Raymick J, Imam S. Neuroprotective and therapeutic strategies against parkinson's disease: recent perspectives. Int J Mol Sci. 2016; 17(6).
  88. Scott CJ, Rose JL, Gunn AJ, et al. Kisspeptin and the regulation of the reproductive axis in domestic animals. J Endocrinol. 2018 [Epub ahead of print].
  89. Seminara SB, Messager S, Chatzidaki EE, et al. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003; 349(17): 1614–1627.
  90. Skorupskaite K, George JT, Anderson RA. The kisspeptin-GnRH pathway in human reproductive health and disease. Hum Reprod Update. 2014; 20(4): 485–500.
  91. Smith JT, Shahab M, Pereira A, et al. Hypothalamic expression of KISS1 and gonadotropin inhibitory hormone genes during the menstrual cycle of a non-human primate. Biol Reprod. 2010; 83(4): 568–577.
  92. Smith JT, Cunningham MJ, Rissman EF, et al. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology. 2005; 146(9): 3686–3692.
  93. Smith JT, Dungan HM, Stoll EA, et al. Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology. 2005; 146(7): 2976–2984.
  94. Stengel A, Wang L, Goebel-Stengel M, et al. Centrally injected kisspeptin reduces food intake by increasing meal intervals in mice. Neuroreport. 2011; 22(5): 253–257.
  95. Stephens SBZ, Chahal N, Munaganuru N, et al. Estrogen stimulation of Kiss1 expression in the medial amygdala involves estrogen receptor-α but not estrogen receptor-β. Endocrinology. 2016; 157(10): 4021–4031.
  96. Stephens S, Kauffman A. Regulation and possible functions of kisspeptin in the medial amygdala. Front Endocrinol. 2017; 8.
  97. Takamura R, Mizuta K, Sekine Y, et al. Modality-Specific impairment of hippocampal CA1 neurons of alzheimer's disease model mice. J Neurosci. 2021; 41(24): 5315–5329.
  98. Tanaka M, Csabafi K, Telegdy G. Neurotransmissions of antidepressant-like effects of kisspeptin-13. Regul Pept. 2013; 180: 1–4.
  99. Telegdy G, Adamik Á. The action of kisspeptin-13 on passive avoidance learning in mice. Involvement of transmitters. Behav Brain Res. 2013; 243: 300–305.
  100. Teles MG, Bianco SDC, Brito VN, et al. A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med. 2008; 358(7): 709–715.
  101. Tomikawa J, Homma T, Tajima S, et al. Molecular characterization and estrogen regulation of hypothalamic KISS1 gene in the pig. Biol Reprod. 2010; 82(2): 313–319.
  102. Trujillo MV, Kalil B, Ramaswamy S, et al. Estradiol upregulates kisspeptin expression in the preoptic area of both the male and female rhesus monkey (Macaca mulatta): implications for the hypothalamic control of ovulation in highly evolved primates. Neuroendocrinology. 2016; 105(1): 77–89.
  103. Tsatsanis C, Dermitzaki E, Avgoustinaki P, et al. The impact of adipose tissue-derived factors on the hypothalamic-pituitary-gonadal (HPG) axis. Hormones (Athens). 2015; 14(4): 549–562.
  104. Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res. 2002; 53(4): 865–871.
  105. Wahab F, Atika B, Shahab M, et al. Kisspeptin signalling in the physiology and pathophysiology of the urogenital system. Nat Rev Urol. 2016; 13(1): 21–32.
  106. Watanabe Y, Uenoyama Y, Suzuki J, et al. Oestrogen-induced activation of preoptic kisspeptin neurones may be involved in the luteinising hormone surge in male and female Japanese monkeys. J Neuroendocrinol. 2014; 26(12): 909–917.
  107. Yan HC, Cao X, Das M, et al. Behavioral animal models of depression. Neurosci Bull. 2010; 26(4): 327–337.
  108. Yang L, Demetriou L, Wall M, et al. OR06-2 kisspeptin enhances brain processing of olfactory and visual cues of attraction in men. J Endocr Soc. 2019; 3(Suppl_1).
  109. Yeo SH, Kyle V, Morris PG, et al. Visualisation of Kiss1 Neurone Distribution Using a Kiss1-CRE Transgenic Mouse. J Neuroendocrinol. 2016; 28(11).
  110. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994; 372(6505): 425–432.


Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., Grupa Via Medica, Świętokrzyska 73, 80–180 Gdańsk, Poland

tel.: +48 58 320 94 94, faks: +48 58 320 94 60, e-mail: