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It is already known that the discovery of kisspeptin was a revolutionary step in 
the understanding of neuroendocrine regulation of reproduction. Kisspeptin is 
one of the main moderators of the gonadotropic axis, but the kisspeptin gene 
is known to be expressed in various regions of the central nervous system. The 
activity of kisspeptin is not limited to hypothalamic pituitary gonadal axis; it 
participates in the regulation of multiple neuronal circuits in the limbic system. 
The limbic system is a part of the brain involved in behavioural and emotional 
reactions, and disturbances in its functioning may be the source of some psy-
chiatric as well as degenerative disorders. In the present review, we summarise 
the current state of knowledge concerning the role of kisspeptin in the limbic 
system and a new hope for the treatment of disturbances in its functioning. 
(Folia Morphol 2021; 80, 4: 756–765)
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INTRODUCTION
Kisspeptin (KP), a protein named after the fa-

mous chocolates ‘Kisses’, has revolutionised both 
our knowledge of hypothalamic pituitary gonadal 
(HPG) axis [29, 56, 90] and the understanding of neu-
roendocrine regulation of reproduction [29, 56, 90]. 
Kisspeptin bases on the principle of feedback which 
allows for the maintaining of homeostasis in various 
physiological states of the body. The first information 
about the KP protein and its influence on the function 
of HPG axis appeared at the end of the 20th century 
during the studies on the function of dynorphin A  
and neurokinin B [15, 48]. The HPG works mainly 

due to the interaction and integration of brain and 
gonadal signals [44, 104]. In the rat, the oestrogen 
receptor is not present on gonadotropin-releasing 
hormone (GnRH) neurons [47]; consequently, gonadal 
feedback must be realised by the intermediate sig-
nalling pathway. The protagonist of this route is KP 
[38, 50, 51, 56, 89]. Kisspeptin plays a decisive role 
in the control of fertility by initiating and regulating 
the process of puberty and pituitary secretion. Since 
2005, it has been known to be the strongest activa-
tor of the HPG axis [43]. Depriving KP or its receptor 
weakens fertility and reproductive physiology [28, 30, 
89], while enhancement of the mutation function in 
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the KISS1R results in premature maturation [100]. In 
immature rats, administration of KP induced the onset 
of maturation, while administration of its antagonist 
delayed it [77].  

Kisspeptin is encoded by the kisspeptin gene 
(KISS1/Kiss1 gene) [63]. This neuropeptide performs 
different roles in brain functions. It is dynamically regu-
lated by neuronal activity and increases synaptic trans-
mission for a long time [6]. The kisspeptin gene is ex-
pressed in the central nervous system [21, 36, 56, 64, 65]  

as well as in many other organs [10]. Kisspeptins are 
the products of KISS1 gene, which operate trough 
the G-protein coupled receptor GPR54 [37] and are 
essential for stimulation of GnRH secretion and in-
duction of puberty (Fig. 1). This receptor is highly 
expressed in the brain areas related to memory and 
emotions, including the hippocampus and amygdala 
[7]. The wide distribution of KP fibres, as well as the 
KP receptor in central and peripheral nervous sys-
tem, is a reason for these proteins being involved in 

Figure 1. Diagram summarizing the integrated function of the major populations of kisspeptin neurons. 1. The primary functions of hypotha-
lamic kisspeptin are its roles in stimulating reproduction and mediating sex steroid feedback signalling. Kisspeptin neurons are situated in 
the anterior ventral periventricular region (AVPV), periventricular nucleus (PeN) and arcuate nucleus (ARC) of the hypothalamus. The diagram 
shows the effect of kisspeptin neurons on GnRH neurons depending on the place of occurrence. In the case of AVPV/PeN, it is a body cell, 
while for ARC, it is a median eminence. Sex steroid hormones inhibit the expression of Kiss1 in the ARC and induce expression in the AVPV/
PeN. When sex steroids are low, Kiss1 expression increases in ARC and decreases in AVPV/PeN. Major elements having reproductive con-
trol are hypothalamic GnRH neurons that release GnRH into the bloodstream system. GnRH influences FSH and LH gonadotropins, which in 
turn regulate gonadal function [29, 56, 90, 103]; 2. Pituitary: synthesize and secrete gonadotropin hormones [luteinizing hormone (LH) and 
follicle-stimulating hormone (FSH)]; 3. Gonads: gamete generation and the production of sex hormones such as oestrogen and testosterone; 
4. The third big population of kisspeptin neurons (in addition to those present in the hypothalamus) is present in the medial nucleus of amyg-
dala (medial amygdala, MeA) [42]; 4a. Kisspeptin neurons from MeA send axons to the preoptic area of hypothalamus (POA) where many 
GnRH neurons are present [78]; 4b. Oestradiol (E2) acts on MeA kisspeptin neurons via oestrogen receptor α (Erα) [95, 96]; 4c. Kisspeptin 
neurons in MeA are reciprocally linked to the accessory olfactory bulb (AOB) [57, 78]; 4d. Kisspeptin neurons in MeA are downregulated by 
GABA signalling via gamma-aminobutyric acid B (GABAB) receptor [34]; 4e. Kisspeptin neurons in MeA get projections from vasopressin and 
tyrosine hydroxylase (TH) neurons [78]; 5. Leptin, produced by white adipose tissue (WAT), has a stimulating effect on the activity of GnRH 
hypothalamic neurons. Kisspeptin neurons are present in the group of intermediate neurons that have leptin receptors [86]; 6. Effect of exter-
nal factors on kisspeptin neurons in hypothalamus, like stress, age, nutrition, and pheromones [85, 88].
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the regulation of multiple neuronal circuits and has 
been reported in a large number of physiological, as 
well as pathophysiological conditions of the repro-
ductive system [18, 90, 105], diabetes [52, 53, 90], 
adiposity [45, 50] and suppression of metastasis in 
various neoplasm [17, 61], locomotor activity [98], 
and anxiety [98]. 

In all examined mammalian species, the locali-
sation of hypothalamic KP neurons is mostly simi-
lar. They are generally placed in the anteroventral 
periventricular nucleus (AVPV) and the preoptic 
periventricular nucleus (PeN), dorsomedial nucleus 
(DMN), and arcuate nucleus (ARN) [1, 20, 32, 41, 
66]. A studied species contains at least two types of 
KP neurons in the hypothalamus [66], and another 
one in the medial amygdala of rodents [96]. The KP 
neurons are observed mainly in the preoptic/rostral 
hypothalamus in various mammalian species, includ-
ing rodents [20, 42, 92, 93], sheep [36, 41], pigs 
[101], nonhuman primates [91, 102, 106] as well 
as human [84]. Due to different role of KP neurons, 
they additionally contain various neurotransmit-
ters/neuromodulators or their precursors like galanin 
[55, 79], enkephalin [79], dopamine [19] or GABA 
and glutamine [26]. Additionally, in the human, KP 
neurons, the co-expression of neuropeptides includ-
ing neurokinin B [48], substance P [49] and cocaine- 
and amphetamine-regulated transcript CART were 
observed. The different co-transmitters present in 
the KP neurons suggest its multimodal functions 
and involvement in various behavioural activities in 
the brain structures.

Leptin, discovered in 1994, is known to be pro-
duced by white fatty tissue (WAT) [110] and to have 
a major indirect effect on excitation of HPG axis. This 
stimulatory effect on the HPG axis is performed 
through the KP interneurons located in the anterior 
part of the hypothalamus which also possess the 
receptors for leptin [12, 13, 50]. Additionally, many 
regulatory factors influence the hypothalamic KP 
neurons and consequently, the release of KP. Energy 
reserves are essential for reproductive success. As 
a result, metabolic factors tightly control the synthesis 
and release of KP [71].

LIMBIC SYSTEM
In 2011 scientists began to examine KP and its 

effects outside the hypothalamus more closely. The 
expression of KP was also found in other components 
of the limbic brain structures, like amygdala [2, 24, 

57, 60, 78, 95], hippocampus [6–8, 62] and olfactory 
system [78]. There are very few records regarding the 
expression of KISS1 mRNA in the striatum [62, 67]. 

The limbic system is a set of structures in the 
brain that are involved in memory and emotions as 
well as in reproductive behaviours [81]. However, the 
precise link connecting those functions is still elusive 
and undefined. Defects in the functioning of the 
limbic system can be a source of many diseases. In 
the past years, KP emerged as physiological regulator 
of GnRH neurons and, hence, of the HPG axis. Some 
reviews summarized this function of KP; however, 
they focused mainly on the presence and role of KP 
in the hypothalamus [38, 50, 51, 56, 83]. There are 
some reports presenting other functions of KP such 
as decreasing food intake, as well as being one of the 
new hypothalamic anorexigenic factors [94]. 

Emotion and sexual responses are fundamental 
in human behaviour. Researchers have shown KP as 
a link between the brain and the reproductive axis 
[24]. Kisspeptin administration enhances limbic and 
paralimbic system activity [24]. What is more, KP re-
duces sexual aversion and noticeably increases brain 
activity [24]. The author emphasizes KP participation 
in limbic system activity, behaviour, and modulation 
of sex hormones [24]. On top of it, KP administration 
decrease negative mood [24]. The results indicate 
that KP also shows antidepressant-like effects [24]. 
Kisspeptin administration activates components of 
the reward system such as the hippocampus, amyg-
dala and the cingulate and enhances the activity of 
this system [24]. Additional research shows, that 
KP increases emotional and sexual processing and 
decreases sexual aversion. This gives green light to 
the kisspeptin-based therapies for emotional and 
psychosexual disorders [23].

The reaction of other species is also interesting. 
Kisspeptin, via activation of the HPG axis, as well as 
modulation of releasing testosterone, has indirect 
effects on aggressive and territorial behaviour in male 
lizards [72]. 

BEHAVIOURAL AND NEURAL  
REACTIONS TO EMOTIONS

The amygdala, emotional centre of the brain, is 
a part of the limbic system. It is closely related to 
anxiety, fear, reward, stress, and social behaviour [81]. 
The medial nucleus of amygdala (MeA) is a most im-
portant brain region in sexual and emotional reaction 
[81] in which Kiss1 neurons were first described in 
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male mice in 2004 [42]. Neurons of MeA contain a lot 
of steroid hormone receptors which interact with the 
sex hormones and transfers olfactory information to 
areas closely related to KP like hypothalamic nuclei 
engaged in reproduction and defence (Fig. 2) [57]. 
Many studies on the amygdala indicate involvement 
of this structure in the regulation of female repro-
ductive cycles and sexual behaviour [60]. It is known 
that the KP neurons present in MeA are the third 
largest population of these neurons in the brain [42, 
96]. Today we know that MeA kisspeptin neurons 
are regulated by sex steroids (E2 via receptor) [95, 
96] and GABA (via receptor) [34]. MeA kisspeptin 
neurons send efferent projections to the hypothala-
mus [78, 109] and are also interconnected with the 
accessory olfactory bulb (AOB) [57, 78]. Additionally, 
they receive projections from vasopressin and TH 
neurons [78]. All this suggests that KP plays a much 
larger role in the regulation and functioning of the 
nervous system.

Kim et al. [60] were first to test the effect of sex 
steroids on rodent’s MeA Kiss1 neurons. In the MeA, 
as in the AVPV/PeN, Kiss1 levels are highly regulated 
and dependent on the level of sex steroids [60]. Ac-
cording to Stephens et al. [95], Kiss1 expression in 
MeA neurons rises at puberty, and it is compatible 
with developmental level of sex steroids. The author’s 
showed that Kiss1 expression in the amygdaloid body 

is present only in pubertal period and is not expressed 
in MeA in the neonate or in the prepubertal period 
[95]. There is a relationship and dependence between 
amygdala KP signalling and the HPG axis. This is 
evidenced by observations on the direct KP admin-
istration into the medial amygdala which stimulate 
a luteinizing hormone (LH) secretion [22]. In turn, KP 
antagonist decreases in LH secretion. 

Activation of KP neurons localized in the poster-
odorsal part of the medial amygdala (MePD) affects 
both social interaction and sexual partner preference 
in male mice [2]. Research on the activation of medial 
amygdala KP neurons shows increases of time spent 
by male mice investigating females [2]. It indicates 
a key role played by MePD kisspeptin in sexual and 
motivation behaviour. 

THE MISSING LINK: WHEN THE SMELL 
MEETS EMOTION

Olfactory bulbs are an important part of the sex-
ual behavioural system due to the presence of direct 
olfactory pathways to the corticomedial nuclei of 
the amygdala [58]. Within the olfactory system, two 
distinct sensory systems can be distinguished; the 
main olfactory system and accessory olfactory sys-
tem [78]. The accessory olfactory bulb projects to 
MeA kisspeptin neurons [78] which are usually called 
“vomeronasal” amygdala [58]. This indicates the role 
of KP neurons in the processing of and responding to 
fragrance and pheromone information. Pheromones 
are detected and processed by accessory olfactory 
system which has been functionally linked to repro-
ductive behaviour [11]. Next, signals triggered by 
pheromones in the accessory olfactory system are 
transmitted to hypothalamus [46]. The connection 
between the olfactory signals and the reproductive 
neuroendocrine axis is indicated by the latest results 
obtained by Aggarwal’s team [3]. Hellier et al. [46] 
indicates that a reproductive success is an effect of 
close relationship of pheromone stimulation. Interest-
ingly, the exact anatomical location of the KP receptor 
has not been described in the olfactory system so far.  

Results obtained by Yang et al. [108] confirm the 
effect of KP on the structures of the limbic system. It 
is known that KP receptors are present in brain struc-
tures involved in emotions. The administration of KP 
significantly affects the reception of aromatic stimuli. 
The activity of the main olfactory network as well as 
structures such as the hippocampus and amygdala 
increase due to the nice smell [108]. In various neu-

Figure 2. Kisspeptins are a family of small but important peptides 
that play a key role in the regulation of neuroendocrine reproductive 
function through the nervous pathways. The diagram demonstrates 
products of the KISS1 gene. Presented are the precursor kisspep-
tin-145 and the functional kisspeptin fragments: kisspeptin-54 and 
shorter peptides such as kisspeptin-14, kisspeptin-13, kisspep-
tin-10 (suffix showing the number of amino acids).
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rodegenerative diseases, the impairment of olfactory 
functions is observed [4, 33]. In the Alzheimer’s or 
Parkinson’s disease, the loss of olfaction may precede 
memory or motor disturbances [35]. To administer 
proper neuroprotective therapies, an early recogni-
tion of degenerative symptoms of the nervous sys-
tem is necessary [87]. According to the role of KP in 
the olfactory and limbic structure, we might suspect 
that kisspeptins are a novel therapeutic potential in 
neurodegenerative diseases as well as reproductive 
disturbances.

FUNCTION OF KISSPEPTIN  
IN HIPPOCAMPUS

The functional role of KP in the hippocampus is 
still unknown. Many studies prove that KP works in 
the hippocampus as a neuropeptide neuromodulator 
[6, 42, 54, 99]. GPR54 is strongly expressed in the 
granular cell of hippocampal dentate gyrus [6–8], 
which is the first step of the hippocampal trisynaptic 
circuit. Lee et al. [62] showed that GPR54 density in 
the hippocampus is very high in the granule cell of 
the dentate gyrus, whereas it is barely detectable in 
the pyramidal cells of CA1 and CA3. Kisspeptin in 
the hippocampus rises the synaptic transmission via 
the activation of mitogen-activated protein kinases 
(MAPK)-related signalling pathway in granular cell of 
the dentate gyrus [8]. According to some authors, this 
regulatory system can play a role in the pathogenesis 
of epilepsy [6, 7]. Arai et al. [6–8] indicate that the 
neuronal activity strongly affects the expression of 
KP. They observed the greatest changes in KP expres-
sion after kainate injection [7], which is often used 
to obtain the model of temporal lobe epilepsy. Arai 
et al. [7] suggest the existence of positive feedback 
loop in the hippocampal formation. The excitability of 
granular cells is increased by the release of KP, which 
in turn has the effect of increasing the expression of 
KP [7]. The peptide system can play a role in epilepsy.

The dentate gyrus of the hippocampus is one 
of main neurogenic niches in the adult brain. Neu-
ral stem cells are located in this place and produce 
progenitors that travel near their final location like 
granular cell layer of the dentate gyrus [14]. The 
continuous addition of new granule cell population 
in the dentate gyrus has the potential to make a pref-
erential participation to neural circuit transformation. 
There is possibility that KP and GPR54 are recruited 
to regulate neurogenesis in combination with other 
neurotrophic factors [63, 64]. This is supported by 

the antimetastatic actions of KP [63, 64]. The ob-
servations carried out by Arai et al. [8] show that 
activation of GPR54 by metastin reversibly increases 
excitatory synaptic transmission in the granule cells 
of dentate gyrus. 

NEW THERAPEUTIC APPROACH  
TO THE TREATMENT OF RECOGNITION 

MEMORY DISORDERS
The Alzheimer’s disease (AD) is associated with 

a loss of cognitive function due to the progressive loss 
of neurons and their synapses. Given the increasing 
incidence of AD, finding new effective therapeu-
tic strategies is now of the utmost importance. The 
GPR54 mRNA is highly expressed in the hippocampus 
[6], what may indicate that KP might be engaged in 
learning and memory processes. Hippocampus has 
a critical role in control of learning and memory, 
and its damage causes dysfunction in the processing 
of memory, memory consolidation and recognition 
[80]. As the role of KP and GPR54 in recognition 
processes was unclear, Jiang et al. [54] were the first 
to undertake research into the relationship of the 
KP/GPR54 system in memory recognition. His research 
was inspired by a Telegdy and Adamik report [99] in 
which he pointed that KP makes learning and memory 
consolidation in mice easier. 

In 2012 Milton et al. [68] underlines that AD in-
volves changes in the functioning of the HPG axis. He 
shows that KP might be a factor preventing neuro-
toxicity of amyloid-β peptide in vitro. Milton was the 
first to show in vitro interaction of KP with amyloid-β 
peptide that suggests a potential role of KP in AD 
pathology [16]. Milton et al. [68] is a mastermind of 
the idea of using KP peptides in preventing, detect-
ing and treating of diseases including Alzheimer’s, 
Creutzfeldt-Jakob disease and type 2 diabetes. Three 
years later, Jiang et al. [54] shows that the injection 
of KP-13 into the lateral ventricle and hippocampus 
activates receptors GPR54, prolongs the memory re-
tention, makes easier the creation of object recogni-
tion memory, and improves memory deficit.

The pyramidal neurons of the CA1 sector of the 
hippocampus are particularly damaged during AD 
[97]. After the injection of amyloid-β into the hip-
pocampus, KP-13 shows neuroprotective effects, al-
leviates disorders, has positive effects on improving 
spatial memory, and significantly prevents neuronal 
loss [59]. Further research is needed to determine 
whether the neuroprotective effects of KP against 
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amyloid-β peptide toxicity are via direct binding to 
amyloid-β peptide or via the receptor. 

The wide expression of KP in structures involved 
in memory mechanisms and learning processes sug-
gests interactions with cholinergic systems. Babaei 
et al. [9] indicate therapeutic function of KP. The 
injection of KP-13 into lateral cerebral ventricle had 
a positive effect on memory and facilitated spatial 
learning in induced AD. This endogenous peptide has 
an important role in alleviating the cognitive deficit 
by increasing the cholinergic response. As KP inter-
acts with many neuropeptides involved in learning 
and memory, its action may be mediated through 
these receptor systems, which should be further in-
vestigated. Gamma-aminobutyric acid (GABA) is an 
example here. This is a key neurotransmitter and is 
closely related to behavioural disorders. Studies have 
shown that administration of KP highly reduces the 
level of GABA in the limbic system in humans [25]. 
Kissorphin, a peptide derived from KP-10, prevents 
acute impairment of memory, cognitive functions, 
and short-term spatial learning due to ethanol ad-
ministration [39].

However, Kiss1 expression is inhibited during met-
abolic stress [82, 86]. It is suggested that an attenua-
tion of KP signalling reduces metabolism as KP levels 
are inversely proportional to insulin secretion [5].  
A decrease in KP signalling causes a decrease in brain 
metabolism [5].

BEHAVIOURAL THEORY OF DEPRESSION 
AND KISSPEPTIN

The limbic system seems to be involved in severe 
mental illnesses such as schizophrenia and depres-
sion. Base for depression is still incompletely under-
stood and little is known about its pathogenesis [75]. 
One of the reasons is the lack of consensus on the 
pathology and aetiology of depression. Some symp-
toms’ characteristics for depression are impossible to 
be modelled on laboratory animals. As of today, the 
criteria for identifying animal models of depression 
are based on actions of antidepressant drugs and 
responses to stress [107]. Animal models played big 
roles in the development of antidepressant drugs. Two 
of the most frequently used examinations are the 
open field test and the forced swim test. The open 
field is a very popular animal model of anxiety-like be-
haviour. The forced swim test is a behavioural test for 
rodents and is one of the most frequently used tests 
for evaluation of antidepressant drugs [76]. Tana-

ka et al. [98] and Telegdy and Adamik [99] showed 
that KP-13 strongly influenced activity, climbing and 
swimming times. In this study, KP-13 displayed anti-
depressant-like effects in a forced swimming test [98]. 
In open field test, the injection of KP-13 into lateral 
cerebral ventricles stimulates the HPA axis which is 
the most important adaptive neuroendocrine system 
[40]. Kisspeptin-13 in the open field test has a big im-
pact on behaviour in rats. In addition, KP-13 induces 
hyperthermia [27]. This suggests a potential role for 
KP in thermogenesis.

The observations carried out by Adekunbi et al. [2]  
focused on KP neuronal population in MeA which 
is involved in anxiety response. Adekunbi et al. [2], 
in contrast to Telegdy and Adamik’s results [99], 
showed that the selective activation of MeA kiss-
peptin neurons reduced anxiety in mice. Injection of 
KP-13 in rats reduced time spent in the open arms 
of the elevated-plus maze. Adekunbi’s mice were less 
anxious which was evidenced by longer exploratory 
time in the open arms of the elevated plus maze [2]. 
Similar results were obtained in another experiment 
regarding the effect of KP on anxiety behaviour in 
male mice. Delmas et al. [31] focused on the role 
of KISS1R signalling in anxiety behaviour. Research 
shows a tendency for decreased anxiety behaviour in 
rapport to the elevated plus maze. Such differences 
in specificity likely result from differences between 
the two species. Further work is necessary to answer 
the questions about the role of KP signalling in anx-
iety in various species, as KP has an antidepressant 
role not only in rodents. Ogawa et al. [73] indicates 
that interaction between KP and the serotonergic 
system plays an important role in the modulation of 
fear in zebrafish. Later studies by his team showed 
that the blockade of serotonin receptors abolished 
the effect of KP, which modulated the serotonergic 
system through glutamatergic neurotransmission [69, 
70, 74]. The role of kisspeptin-based therapy requires 
further study and explanation as there are clear links 
between KP and anxiety.

CONCLUSIONS
Today, KP is undoubtedly one of the basic proteins 

regulating not only the mechanisms underlying re-
productive functions, but also the neuronal networks 
that integrate sexual and emotional behaviour with 
reproductive functions (Fig. 3). To date, most of the 
data concentrate on the sexual role of KP in the cen-
tral nervous system, so it will be of great interest in 



762

Folia Morphol., 2021, Vol. 80, No. 4

the coming years to investigate its role in emotion 
and memory function in healthy condition as well as 
in the diseases. The results indicating the therapeutic 
role of KP in neuropsychiatric and neurodegenerative 
diseases represent a promising path for the develop-
ment of research into this problem. Future studies 
will, undoubtfully, investigate the influence of KP on 
behaviours in various species including humans and 
attempt to delineate the precise neuronal pathways 
involved. Furthermore, with a better understanding 
of these processes, there may emerge potential ther-
apeutic applications to aid patients with various neu-
rodegenerative, emotional or psychosexual diseases.
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