Online first
Original article
Published online: 2024-10-14

open access

Page views 117
Article views/downloads 58
Get Citation

Connect on Social Media

Connect on Social Media

Digital image analysis of vertebral body L4 and its ossification center in the human fetus

Mariusz Baumgart1, Magdalena Grzonkowska1, Michał Kułakowski2

Abstract

Using a Siemens-Biograph 128 mCT camera the morphometric analysis of the L4 vertebral body and its ossification center were done in 55 human fetuses aged 17 to 30 weeks. No sex differences were found. The mean height, transverse and sagittal diameters of L4 vertebral body followed the logarithmic functions: y = –11.797+ 5.208 × ln(age) ± 0.372, y = –23.462 + 9.428 × ln(age) ± 0.702, y = 2.770 + 13.521 × ln(age) ± 1.722, respectively. The mean cross-sectional area of L4 vertebral body followed the linear function: y = –30.683 + 1.976 × age ± 2.701. The mean volume of L4 vertebral body followed the second-degree polynomial function: y = –93.983+ 0.385 × (age)2 ± 23.707. The mean transverse and sagittal diameters of the ossification center of L4 vertebral body followed the natural logarithmic function: y = –27.106 + 10.178 × ln(age) ± 0.769 and y = –13.345 + 5.458 × ln(age) ± 0.424, respectively. The mean cross-sectional area and the volume of the ossification center of L4 vertebral body followed the linear function: y = –30.683 + 1.976 × age ± 2.701 and y = –43.214 + 2.760 × age ± 4.085, respectively.

Article available in PDF format

View PDF Download PDF file

References

  1. Bagnall KM, Harris PF, Jones PR. A radiographic study of the human fetal spine. 2. The sequence of development of ossification centres in the vertebral column. J Anat. 1977; 124(Pt 3): 791–802.
  2. Bareggi R, Grill V, Zweyer M, et al. A quantitative study on the spatial and temporal ossification patterns of vertebral centra and neural arches and their relationship to the fetal age. Ann Anat. 1994; 176(4): 311–317.
  3. Baumgart M, Wiśniewski M, Grzonkowska M, et al. Digital image analysis of ossification centers in the axial dens and body in the human fetus. Surg Radiol Anat. 2016; 38(10): 1195–1203.
  4. Baumgart M, Szpinda M, Szpinda A. New anatomical data on the growing C4 vertebra and its three ossification centers in human fetuses. Surg Radiol Anat. 2013; 35(3): 191–203.
  5. Beuls EAM, Vanormelingen L, van Aalst J, et al. In vitro high-field magnetic resonance imaging-documented anatomy of a fetal myelomeningocele at 20 weeks' gestation. A contribution to the rationale of intrauterine surgical repair of spina bifida. J Neurosurg. 2003; 98(2 Suppl): 210–214.
  6. Bober MB, Taylor M, Heinle R, et al. Achondroplasia-hypochondroplasia complex and abnormal pulmonary anatomy. Am J Med Genet A. 2012; 158A(9): 2336–2341.
  7. Bonafe L, Cormier-Daire V, Hall C, et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A. 2015; 167A(12): 2869–2892.
  8. Bruner JP, Tulipan N, Paschall RL, et al. Fetal surgery for myelomeningocele and the incidence of shunt-dependent hydrocephalus. JAMA. 1999; 282(19): 1819–1825.
  9. Chano T, Matsumoto K, Ishizawa M, et al. Analysis of the presence of osteocalcin, S-100 protein, and proliferating cell nuclear antigen in cells of various types of osteosarcomas. Eur J Histochem. 1996; 40(3): 189–198.
  10. Digilio MC, Marino B, Giannotti A, et al. Atrioventricular canal defect and postaxial polydactyly indicating phenotypic overlap of Ellis-van Creveld and Kaufman-McKusick syndromes. Pediatr Cardiol. 1997; 18(1): 74–75.
  11. Duarte WR, Shibata T, Takenaga K, et al. S100A4: a novel negative regulator of mineralization and osteoblast differentiation. J Bone Miner Res. 2003; 18(3): 493–501.
  12. Hassanzadeh M, Rastegar K, Hedayatizadeh M, et al. Evaluation of split cord malformation between years 2006 and 2020: A case series study. Transl Res Anat. 2023; 32: 100251.
  13. Kedzia A, Czyz M. Ossification process and lumbar spine morphology in the prenatal period. Med Sci Monit. 2003; 9(9): BR343–BR350.
  14. Khan S, Hinks J, Shorto J, et al. Some cases of common variable immunodeficiency may be due to a mutation in the SBDS gene of Shwachman-Diamond syndrome. Clin Exp Immunol. 2008; 151(3): 448–454.
  15. Kiel EA, Frias JL, Victorica BE. Cardiovascular manifestations in the Larsen syndrome. Pediatrics. 1983; 71(6): 942–946.
  16. Lee W, Chaiworapongsa T, Romero R, et al. A diagnostic approach for the evaluation of spina bifida by three-dimensional ultrasonography. J Ultrasound Med. 2002; 21(6): 619–626.
  17. Vakkilainen S, Taskinen M, Klemetti P, et al. Increased mortality in cartilage — hair hypoplasia. Arch Dis Child. 2001; 84(1): 65–67.
  18. Mărginean OM, Mîndrilă I, Damian CM, et al. Contributions on the morphometric study of the newborn and fetus spine. Romanian Journal of Functional & Clinical, Macro- & Microscopica. 2011; 10(4): 423.
  19. Naidoo N, Khan R, Abdulwahab T, et al. A novel reconstructive approach of the lumbar vertebral column from 2D MRI to 3D models. Transl Res Anat. 2022; 29: 100229.
  20. Nalla S, Sanchis-Gimeno J, Paton G. Prevalence of sacral spina bifida occulta with lumbosacral transitional vertebra in a skeletal collection of a South African population. Transl Res Anat. 2024; 36: 100307.
  21. Orioli IM, Castilla EE, Barbosa-Neto JG. The birth prevalence rates for the skeletal dysplasias. J Med Genet. 1986; 23(4): 328–332.
  22. Pooh R. Neuroscan of Normal and Abnormal Vertebrae and Spinal Cord. Donald Sch J Ultrasound Obstet Gynecol. 2009; 2(3): 9–18.
  23. Schild RL, Wallny T, Fimmers R, et al. The size of the fetal thoracolumbar spine: a three-dimensional ultrasound study. Ultrasound Obstet Gynecol. 2000; 16(5): 468–472.
  24. Skórzewska A, Grzymisławska M, Bruska M, et al. Ossification of the vertebral column in human foetuses: histological and computed tomography studies. Folia Morphol. 2013; 72(3): 230–238.
  25. Szpinda M, Baumgart M, Szpinda A, et al. Cross-sectional study of the ossification center of the C1-S5 vertebral bodies. Surg Radiol Anat. 2013; 35(5): 395–402.
  26. Szpinda M, Baumgart M, Szpinda A, et al. Morphometric study of the T6 vertebra and its three ossification centers in the human fetus. Surg Radiol Anat. 2013; 35(10): 901–916.
  27. Szpinda M, Baumgart M, Szpinda A, et al. New patterns of the growing L3 vertebra and its 3 ossification centers in human fetuses – a CT, digital, and statistical study. Med Sci Monit Basic Res. 2013; 19: 169–180.
  28. Unger S. A genetic approach to the diagnosis of skeletal dysplasia. Clin Orthop Relat Res. 2002(401): 32–38.
  29. Wallny T, Schild RL, Fimmers R, et al. Three-dimensional sonographic evaluation of the fetal lumbar spinal canal. J Anat. 2002; 200(5): 439–443.
  30. Wei Q, Cai A, Wang X, et al. Value of 3-dimensional sonography for prenatal diagnosis of vertebral formation failure. J Ultrasound Med. 2013; 32(4): 595–607.
  31. Widjaja E, Whitby EH, Paley MNJ, et al. Normal fetal lumbar spine on postmortem MR imaging. AJNR Am J Neuroradiol. 2006; 27(3): 553–559.
  32. Żytkowski A, Tubbs R, Iwanaga J, et al. Anatomical normality and variability: Historical perspective and methodological considerations. Transl Res Anat. 2021; 23: 100105.