Vol 61, No 1 (2023)
Original paper
Published online: 2023-01-23

open access

Page views 2551
Article views/downloads 350
Get Citation

Connect on Social Media

Connect on Social Media

Morphology and immunohistochemical characteristics of the otic ganglion in the chinchilla (Chinchilla laniger Molina)

Waldemar Sienkiewicz1, Jacek Kuchinka2, Agnieszka Dudek1, Elżbieta Nowak2, Jerzy Kaleczyc1, Małgorzata Radzimirska2, Aleksander Szczurkowski3
Pubmed: 36692115
Folia Histochem Cytobiol 2023;61(1):17-25.

Abstract

Introduction. The available literature provides relatively little information on the morphology of the autonomic head ganglia in rodents including their neurochemical codding.

Material and methods. Morphological investigations of the otic ganglion of the chinchilla were performed using the modified acetylcholinesterase method. The cellular structure was investigated with histological techniques and neurochemical properties were studied with the double-labelling immunofluorescence method.

Results. Macromorphological investigations allowed the otic ganglion to be identified as a compact, oval agglomeration of neurons and nerve fibers. Multidimensional cross-sections revealed densely arranged neuronal perikarya and two populations of nerve cells differing in size were distinguished. The large cells (40–50 μm) accounted for about 80% of the neurons in the cross-sections. Moreover, a small number of intraganglionic nerve fibers was observed. Immunohistochemical staining revealed that over 85% of the neuronal cell bodies in the otic ganglion contained immunoreactivity to VAChT or ChAT. VIP-immunoreactive perikarya comprised approximately 10% of the ganglionic cells. Double staining revealed the presence of VAChT+ and NOS+ neurons which amounted to about 45% of the nerve cells in the otic ganglion. NOS+ only perikarya comprised approx. 15% of all the neurons. Immunoreactivity to enkephalins, substance P, somatostatin, and galanin was expressed in single nerve cell bodies and nerve fibers except numerous substance P+ intraganglionic nerve fibers. Some of them were stained also for CGRP. Single neurons stained for tyroxine hydroxylase.

Conclusions. Our results, compared with findings in other rodent species suggest the existence of interspecies differences in the morphology, cellular structure, and immunohistochemical properties of the head autonomic ganglia in mammals.

Article available in PDF format

View PDF Download PDF file

References

  1. Gienc J. The application of the histochemical method in the anatomical studies on the parasympathetic ganglia and nerve bundles of postganglionic axons in the sublingual region of some mammals. Zool Pol. 1977; 26: 187–192.
  2. Tsuji S, Larabi Y. A modification of thiocholine-ferricyanide method of Karnovsky and Roots for localization of acetylcholinesterase activity without interference by Koelle's copper thiocholine iodide precipitate. Histochemistry. 1983; 78(3): 317–323.
  3. Gienc J, Kuder T. Otic ganglion in dog. Topography and macroscopic structure. Folia Morphol (Warsz). 1983; 42(1): 31–40.
  4. Kuchiiwa S, Kuchiiwa T, Nonaka S, et al. Facial nerve parasympathetic preganglionic afferents to the accessory otic ganglia by way of the chorda tympani nerve in the cat. Anat Embryol (Berl). 1998; 197(5): 377–382.
  5. Szczurkowski A. Morphology, topography and cytoarchitectonics of the otic ganglion in the spotted suslik (Spermophilus suslicus, Güldenstaedt 1770). Annals of Anatomy - Anatomischer Anzeiger. 1999; 181(4): 409–411.
  6. Szczurkowski A, Kuder T, Nowak E, et al. Morphology, topography and cytoarchitectonics of the otic ganglion in Egyptian spiny mouse (Acomys cahirinus, Desmarest). Folia Morphol (Warsz). 2001; 60(1): 61–64.
  7. Shimizu T. Distribution and pathway of the cerebrovascular nerve fibers from the otic ganglion in the rat: anterograde tracing study. J Auton Nerv Syst. 1994; 49(1): 47–54.
  8. Hardebo JE, Suzuki N, Ekblad E, et al. Vasoactive intestinal polypeptide and acetylcholine coexist with neuropeptide Y, dopamine-beta-hydroxylase, tyrosine hydroxylase, substance P or calcitonin gene-related peptide in neuronal subpopulations in cranial parasympathetic ganglia of rat. Cell Tissue Res. 1992; 267(2): 291–300.
  9. Leblanc GG, Trimmer BA, Landis SC. Neuropeptide Y-like immunoreactivity in rat cranial parasympathetic neurons: coexistence with vasoactive intestinal peptide and choline acetyltransferase. Proc Natl Acad Sci U S A. 1987; 84(10): 3511–3515.
  10. Suzuki N, Hardebo JE, Kâhrström J, et al. Neuropeptide Y Co-Exists with Vasoactive Intestinal Polypeptide and Acetylcholine in Parasympathetic Cerebrovascular Nerves Originating in the Sphenopalatine, OTIC, and Internal Carotid Ganglia of the Rat. Neuroscience. 1990; 36(2): 507–519.
  11. Suzuki N, Hardebo JE, Owman C. Origins and pathways of choline acetyltransferase-positive parasympathetic nerve fibers to cerebral vessels in rat. J Cereb Blood Flow Metab. 1990; 10(3): 399–408.
  12. Lakomy M, Kaleczyc J, Wasowicz K, et al. Immunohistochemical study of the otic ganglion in the pig. Pol J Vet Sci. 2002; 5(4): 257–262.
  13. Ayer-LeLievre C, Seiger Å. Substance P-like immunoreactivity in developing cranial parasympathetic neurons of the rat. Int J Devl Neuroscience. 2003; 3(3): 267–277.
  14. Suckow MA, Stevens KA, Wilson RP. The laboratory rabbit, guinea pig, hamster, and other rodents. 1st ed. Saunders: Elsevier, Amsterdam 2012.
  15. Nowak E. Organization of the innervation of the oesophagus and stomach in chinchilla (Chinchilla laniger, Molina). Folia Histochem Cytobiol. 2013; 51(2): 115–120.
  16. Radzimirska M, Kuchinka J, Nowak E, et al. Cholinergic and adrenergic innervation of the pancreas in chinchilla (Chinchilla Laniger Molina). Folia Histochem Cytobiol. 2020; 58(1): 54–60.
  17. Radzimirska M, Kuchinka J, Kuder T, et al. Distribution and neurochemical characteristic of the cardiac nerve structures in the heart of chinchilla (Chinchilla laniger Molina). Folia Histochem Cytobiol. 2021; 59(3): 157–166.
  18. Highley JR, Sullivan N. Neuropathology and muscle biopsy techniques. In: Suvarna SK, Layton C, Bancroft JD. ed. Bancroft’s theory and practice of histological techniques. 8th ed. Elsevier, Amsterdam 2019: 306–336.
  19. Zawistowski S. Technika histologiczna, histologia oraz podstawy histopatologii. PZWL, Warszawa 1986.
  20. International Committee on Veterinary Gross Anatomical Nomenclature ICVGAN. Nomina Anatomica Veterinaria. 6th ed. The Editorial Committee, Hanover, Ghent, Columbia, Rio de Janeiro 2017.
  21. Gienc J, Kuder T. Morphology and topography of the otic ganglion in guinea pig detected with thiocholine technique. Folia Morphol (Warsz). 1980; 39(1): 79–85.
  22. Fischbach I, Dudzińska B. Topography of the otic ganglion in rabbit. [Topografia zwoju usznego u królika, in Polish]. Folia Morphol (Warsz). 1970; 29(4): 241–247.
  23. Gienc J, Kuder T, Szczurkowski A. Parasympathetic Ganglia in the head of western hedgehog (Erinaceus europaeus). I. Otic ganglion. Acta Theriologica. 1988; 33: 115-120, plates 5–6.
  24. Kuder T, Kuder T, Kuder T. Comparative morphology and topography of cranial parasympathetic ganglia connected with the trigeminal nerve in mouse, rat and hamster (Mus musculus L. 1759, Rattus norvegicus B. 1769, Mesocricetus aureatus W. 1839). Part I. Otic ganglion. Folia Morphol (Warsz). 1983; 42(3): 187–197.
  25. Kuder T. Topography and macroscopic structure of parasympathetic ganglia connected with the trigeminal nerve in midday gerbil (Meriones meridianus - Mammalia: Rodentia). Acta Biol Cracow Zool. 1985; 27: 61–71.
  26. Dixon JS. The fine structure of parasympathetic nerve cells in the otic ganglia of the rabbit. Anat Rec. 1966; 156(3): 239–251.
  27. Godinho H. A comparative anatomical study of the cranial nerves in goat, sheep and bovine (Capra hircus, Ovis aries and Bos taurus): their distribution and related autonomic components [a dissertation]. Iowa State University, Ames-Iowa. 1968.
  28. Petela L. Topography of the trigeminal nerve in cattle. Part III. Mandibular nerve. [Topografia nerwu trójdzielnego u bydła. Część III. Nerw żuchwowy. In Polish]. Pol Arch Vet. 1974; 17: 559–580.
  29. Petela L. The trigeminal nerve in boar (Sus scrofa L.1758). [Nerw trójdzielny u dzika (Sus scrofa L. 1758), in Polish]. Zesz Nauk AR Wrocław. 1979; 17: 1–55.
  30. Kovšikova LP. The otic ganglion in domestic animals. [Usnoj uzel - gln. oticum domasnich żivotnych]. Ucennyje Zap Viteb Vet Inst. 1958; 16: 11–114.
  31. Edvinsson L, Elsås T, Suzuki N, et al. Origin and Co-localization of nitric oxide synthase, CGRP, PACAP, and VIP in the cerebral circulation of the rat. Microsc Res Tech. 2001; 53(3): 221–228.
  32. Suzuki N, Shimizu T, Takao M, et al. Occurrence and distribution of substance P receptors in the cerebral blood vessels of the rat. Brain Res. 1999; 830(2): 372–378.
  33. Kaleczyc J, Juranek J, Całka J, et al. Immunohistochemical characterization of neurons in the porcine ciliary ganglion. Pol J Vet Sci. 2005; 8(1): 65–72.
  34. Podlasz P, Wąsowicz K, Kaleczyc J, et al. Localization of immunoreactivities for neuropeptides and neurotransmitter-synthesizing enzymes in the pterygopalatine ganglion of the pig. Veterinární Medicína. 2012; 48(4): 99–107.
  35. Szczurkowski A, Sienkiewicz W, Kuchinka J, et al. Morphology and immunohistochemical characteristics of the pterygopalatine ganglion in the chinchilla (Chinchilla laniger, Molina). Pol J Vet Sci. 2013; 16(2): 359–368.
  36. Landis SC, Jackson PC, Fredieu JR, et al. Catecholaminergic properties of cholinergic neurons and synapses in adult rat ciliary ganglion. J Neurosci. 1987; 7(11): 3574–3587.
  37. Uemura Y, Sugimoto T, Nomura S, et al. Tyrosine hydroxylase-like immunoreactivity and catecholamine fluorescence in ciliary ganglion neurons. Brain Res. 1987; 416(1): 200–203.
  38. Kirch W, Neuhuber W, Tamm ER. Immunohistochemical localization of neuropeptides in the human ciliary ganglion. Brain Res. 1995; 681(1-2): 229–234.
  39. Uddman R, Tajti J, Möller S, et al. Neuronal messengers and peptide receptors in the human sphenopalatine and otic ganglia. Brain Research. 1999; 826(2): 193–199.
  40. Gibbins IL. Target-related patterns of co-existence of neuropeptide Y, vasoactive intestinal peptide, enkephalin and substance P in cranial parasympathetic neurons innervating the facial skin and exocrine glands of guinea-pigs. Neuroscience. 1990; 38(2): 541–560.
  41. Shimizu T, Morris JL, Gibbins IL. Expression of immunoreactivity to neurokinin-1 receptor by subsets of cranial parasympathetic neurons: correlation with neuropeptides, nitric oxide synthase, and pathways. Exp Neurol. 2001; 172(2): 293–306.