Expression of CD105 but not of E-cadherin is associated with malignancy recurrence and disease-free interval in laryngeal cancer in men
Abstract
Introduction. In this study we analyzed CD105 (endoglin) and E-cadherin expression in laryngeal squamous cell carcinoma (LSCC) to evaluate their clinicopathologic significance.
Material and methods. Expression of CD105 and E-cadherin was examined immunohistochemically using paraffin-embedded archival tissues of 72 (35 glottic and 37 supraglottic) previously untreated LSCC male patients. The mean value of the positively-stained microvessels for CD105 counted in four hot spots for each case was used as the final intratumoralmicrovessel density (MVD). A staining score of E-cadherin was calculated based on the percentage of cells stained (0–100%).
Results. MVD was significantly higher in patients with advanced TNM stage (P = 0.004) and younger than 65 (P = 0.008). Nodal metastases were more frequent in the cases with low E-cadherin expression (P = 0.000). Tumor recurrence was associated with advanced TNM stage (P = 0.035) and high MVD (P = 0.002). A high MVD was an independent predictor of malignancy recurrence (P = 0.021). The log-rank test showed a significant difference in the disease-free interval in patients stratified according to the MVD value (P = 0.016). Spearman’s rank correlation test did not show a significant correlation between E-cadherin and CD105 expression.
Conclusions. CD105-assessed MVD and expression of E-cadherin are promising prognostic factors for the outcome of patients with LSCC. Increased expression of CD105 could help predict patients with an increased risk of developing loco-regional recurrence after surgical treatment. Decreased E-cadherin expression is a potential predictor of lymph node metastases.
Keywords: laryngeal carcinomaCD105angiogenesisE-cadherinMVDimmunohistochemistry
References
- Nocini R, Molteni G, Mattiuzzi C, et al. Updates on larynx cancer epidemiology. Chin J Cancer Res. 2020; 32(1): 18–25.
- Bradford CR, Ferlito A, Devaney KO, et al. Prognostic factors in laryngeal squamous cell carcinoma. Laryngoscope Investig Otolaryngol. 2020; 5(1): 74–81.
- Prognostic factor definition. National Cancer Institute. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/prognostic-factor (6.01.2023).
- Johansen LV, Grau C, Overgaard J. Laryngeal carcinoma — multivariate analysis of prognostic factors in 1252 consecutive patients treated with primary radiotherapy. Acta Oncol. 2003; 42(7): 771–778.
- Chen AY, Halpern M. Factors predictive of survival in advanced laryngeal cancer. Arch Otolaryngol Head Neck Surg. 2007; 133(12): 1270–1276.
- Bøje CR. Impact of comorbidity on treatment outcome in head and neck squamous cell carcinoma — a systematic review. Radiother Oncol. 2014; 110(1): 81–90.
- Li ZQ, Zou L, Liu TR, et al. Prognostic value of body mass index before treatment for laryngeal squamous cell carcinoma. Cancer Biol Med. 2015; 12(4): 394–400.
- Bonner J, Giralt J, Harari P, et al. Cetuximab and radiotherapy in laryngeal preservation for cancers of the larynx and hypopharynx: a secondary analysis of a randomized clinical trial. JAMA Otolaryngol Head Neck Surg. 2016; 142(9): 842–849.
- Atef A, El-Rashidy MA, Elzayat S, et al. The prognostic value of sex hormone receptors expression in laryngeal carcinoma. Tissue Cell. 2019; 57: 84–89.
- Ahmadi N, Ahmadi N, Chan MV, et al. Laryngeal squamous cell carcinoma survival in the context of human papillomavirus: a systematic review and meta-analysis. Cureus. 2018; 10(2): e2234.
- Coca-Pelaz A, Rodrigo JP, Suárez C, et al. The risk of second primary tumors in head and neck cancer: a systematic review. Head Neck. 2020; 42(3): 456–466.
- Franz L, Nicolè L, Frigo AC, et al. Epithelial-to-mesenchymal transition and neoangiogenesis in laryngeal squamous cell carcinoma. Cancers (Basel). 2021; 13(13).
- Litwiniuk-Kosmala M, Makuszewska M, Czesak M. Endoglin in head and neck neoplasms. Front Med (Lausanne). 2023; 10: 1115212.
- Mineo TC, Ambrogi V, Baldi A, et al. Prognostic impact of VEGF, CD31, CD34, and CD105 expression and tumour vessel invasion after radical surgery for IB-IIA non-small cell lung cancer. J Clin Pathol. 2004; 57(6): 591–597.
- Nagatsuka H, Hibi K, Gunduz M, et al. Various immunostaining patterns of CD31, CD34 and endoglin and their relationship with lymph node metastasis in oral squamous cell carcinomas. J Oral Pathol Med. 2005; 34(2): 70–76.
- Li SL, Gao DL, Zhao ZH, et al. Correlation of matrix metalloproteinase suppressor genes RECK, VEGF, and CD105 with angiogenesis and biological behavior in esophageal squamous cell carcinoma. World J Gastroenterol. 2007; 13(45): 6076–6081.
- Sánchez-Elsner T, Botella LM, Velasco B, et al. Endoglin expression is regulated by transcriptional cooperation between the hypoxia and transforming growth factor-beta pathways. J Biol Chem. 2002; 277(46): 43799–43808.
- Miyata Y, Sagara Y, Watanabe Si, et al. CD105 is a more appropriate marker for evaluating angiogenesis in urothelial cancer of the upper urinary tract than CD31 or CD34. Virchows Arch. 2013; 463(5): 673–679.
- Marioni G, Giacomelli L, D’Alessandro E, et al. Laryngeal carcinoma recurrence rate and disease-free interval are related to CD105 expression but not to vascular endothelial growth factor 2 (Flk-1/Kdr) expression. Anticancer Res. 2008; 28(1B): 551–557.
- Zvrko E, Mikic A, Vuckovic L. CD105 expression as a measure of microvessel density in supraglottic laryngeal squamous cell carcinoma. Eur Arch Otorhinolaryngol. 2009; 266(12): 1971–1976.
- Zvrko E, Mikic A, Vuckovic L, et al. Prognostic relevance of CD105-assessed microvessel density in laryngeal carcinoma. Otolaryngol Head Neck Surg. 2009; 141(4): 478–483.
- Lovato A, Marioni G, Manzato E, et al. Elderly patients at higher risk of laryngeal carcinoma recurrence could be identified by a panel of two biomarkers (nm23-H1 and CD105) and pN+ status. Eur Arch Otorhinolaryngol. 2015; 272(11): 3417–3424.
- Marioni G, Franz L, Ottaviano G, et al. Prognostic significance of CD105- and CD31-assessed microvessel density in paired biopsies and surgical samples of laryngeal carcinoma. Cancers (Basel). 2020; 12(8).
- Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009; 119(6): 1420–1428.
- Loh CY, Chai JYi, Tang TF, et al. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells. 2019; 8(10).
- Kaszak I, Witkowska-Piłaszewicz O, Niewiadomska Z, et al. Role of cadherins in cancer — a review. Int J Mol Sci. 2020; 21(20).
- Piprek RP, Kloc M, Mizia P, et al. The central role of cadherins in gonad development, reproduction, and fertility. Int J Mol Sci. 2020; 21(21).
- Punovuori K, Malaguti M, Lowell S. Cadherins in early neural development. Cell Mol Life Sci. 2021; 78(9): 4435–4450.
- Marioni G, Nicolè L, Cappellesso R, et al. β-Arrestin-1 expression and epithelial-to-mesenchymal transition in laryngeal carcinoma. Int J Biol Markers. 2019; 34(1): 33–40.
- Zvrko E, Mikić A, Jancić S. Relationship of E-cadherin with cervical lymph node metastasis in laryngeal cancer. Coll Antropol. 2012; 36 Suppl 2: 119–124.
- Zhu GJ, Song PP, Zhou H, et al. Role of epithelial-mesenchymal transition markers E-cadherin, N-cadherin, β-catenin and ZEB2 in laryngeal squamous cell carcinoma. Oncol Lett. 2018; 15(3): 3472–3481.
- Zhang M, Li H, Han Y, et al. Clinicopathological significance of SOX4 and epithelial-mesenchymal transition markers in patients with laryngeal squamous cell carcinoma. Medicine (Baltimore). 2021; 100(12): e25028–1175.
- Paksoy M, Hardal U, Caglar C. Expression of cathepsin D and E-cadherin in primary laryngeal cancers correlation with neck lymph node involvement. J Cancer Res Clin Oncol. 2011; 137(9): 1371–1377.
- Yüce İ, Çağlı S, Canöz Ö, et al. Predictive value of E-cadherin and Ep-CAM in cervical lymph node metastasis of supraglottic larynx carcinoma. Am J Otolaryngol. 2015; 36(6): 736–740.
- Barutçu O, Kara M, Muratlı A, et al. Clinical significance of Ki-67, c-erbB-2 and E-cadherin expressions in open partial laryngectomy patients. Kulak Burun Bogaz Ihtis Derg. 2016; 26(5): 283–292.
- Kejner AE, Li H, Li EY, et al. Treatment modality and outcomes in larynx cancer patients: A sex-based evaluation. Head Neck. 2019; 41(11): 3764–3774.
- Saini AT, Genden EM, Megwalu UC. Sociodemographic disparities in choice of therapy and survival in advanced laryngeal cancer. Am J Otolaryngol. 2016; 37(2): 65–69.
- Fakhry C, Westra WH, Wang SJ, et al. The prognostic role of sex, race, and human papillomavirus in oropharyngeal and nonoropharyngeal head and neck squamous cell cancer. Cancer. 2017; 123(9): 1566–1575.
- Monden N, Asakage T, Kiyota N, et al. Head and Neck Cancer Study Group (HNCSG). A review of head and neck cancer staging system in the TNM classification of malignant tumors (eighth edition). Jpn J Clin Oncol. 2019; 49(7): 589–595.
- Weidner N, Semple JP, Welch WR, et al. Tumor angiogenesis and metastasis — correlation in invasive breast carcinoma. N Engl J Med. 1991; 324(1): 1–8.
- Saad RS, Liu YL, Nathan G, et al. Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in colorectal cancer. Mod Pathol. 2004; 17(2): 197–203.
- Kumar S, Ghellal A, Li C, et al. Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res. 1999; 59(4): 856–861.
- Yagasaki H, Kawata N, Takimoto Y, et al. Histopathological analysis of angiogenic factors in renal cell carcinoma. Int J Urol. 2003; 10(4): 220–227.
- Martone T, Rosso P, Albera R, et al. Prognostic relevance of CD105+ microvessel density in HNSCC patient outcome. Oral Oncol. 2005; 41(2): 147–155.
- Kyzas PA, Agnantis NJ, Stefanou D. Endoglin (CD105) as a prognostic factor in head and neck squamous cell carcinoma. Virchows Arch. 2006; 448(6): 768–775.
- Gu X, Xu Y, Wu He, et al. [Relationship between CD105 and angiogenesis and biological behaviors in squamous carcinoma of larynx]. Lin Chuang Er Bi Yan Hou Ke Za Zhi. 2006; 20(3): 125–128.
- Chen HC, Chu RY, Hsu PN, et al. Loss of E-cadherin expression correlates with poor differentiation and invasion into adjacent organs in gastric adenocarcinomas. Cancer Lett. 2003; 201(1): 97–106.
- Köksal IT, Ozcan F, Kiliçaslan I, et al. Expression of E-cadherin in prostate cancer in formalin-fixed, paraffin-embedded tissues: correlation with pathological features. Pathology. 2002; 34(3): 233–238.
- Kanazawa T, Watanabe T, Kazama S, et al. Poorly differentiated adenocarcinoma and mucinous carcinoma of the colon and rectum show higher rates of loss of heterozygosity and loss of E-cadherin expression due to methylation of promoter region. Int J Cancer. 2002; 102(3): 225–229.
- Sarrió D, Pérez-Mies B, Hardisson D, et al. Cytoplasmic localization of p120ctn and E-cadherin loss characterize lobular breast carcinoma from preinvasive to metastatic lesions. Oncogene. 2004; 23(19): 3272–3283.
- Franchi A, Gallo O, Boddi V, et al. Prediction of occult neck metastases in laryngeal carcinoma: role of proliferating cell nuclear antigen, MIB-1, and E-cadherin immunohistochemical determination. Clin Cancer Res. 1996; 2(10): 1801–1808.
- Rodrigo JP, Domínguez F, Alvarez C, et al. Expression of E-cadherin in squamous cell carcinomas of the supraglottic larynx with correlations to clinicopathological features. Eur J Cancer. 2002; 38(8): 1059–1064.
- Akdeniz O, Akduman D, Haksever M, et al. Relationships between clinical behavior of laryngeal squamous cell carcinomas and expression of VEGF, MMP-9 and E-cadherin. Asian Pac J Cancer Prev. 2013; 14(9): 5301–5310.
- Ahmed RA, Shawky AEA, Hamed RH. Prognostic significance of cyclin D1 and E-cadherin expression in laryngeal squamous cell carcinoma. Pathol Oncol Res. 2014; 20(3): 625–633.
- Andrews NA, Jones AS, Helliwell TR, et al. Expression of the E-cadherin-catenin cell adhesion complex in primary squamous cell carcinomas of the head and neck and their nodal metastases. Br J Cancer. 1997; 75(10): 1474–1480.
- Takes RP, Baatenburg de Jong RJ, Schuuring E, et al. Markers for assessment of nodal metastasis in laryngeal carcinoma. Arch Otolaryngol Head Neck Surg. 1997; 123(4): 412–419.
- Cappellesso R, Marioni G, Crescenzi M, et al. The prognostic role of the epithelial-mesenchymal transition markers E-cadherin and Slug in laryngeal squamous cell carcinoma. Histopathology. 2015; 67(4): 491–500.
- Li Q, Zhang B, Peng P. [Relevance of Endoglin (CD105) VEGF and p53 with invasion metastasis and prognosis of laryngeal carcinoma]. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2007; 21(24): 1114–1117.
- Marioni G, Ottaviano G, Giacomelli L, et al. CD105-assessed micro-vessel density is associated with malignancy recurrence in laryngeal squamous cell carcinoma. Eur J Surg Oncol. 2006; 32(10): 1149–1153.
- Gordon MS, Robert F, Matei D, et al. An open-label phase Ib dose-escalation study of TRC105 (anti-endoglin antibody) with bevacizumab in patients with advanced cancer. Clin Cancer Res. 2014; 20(23): 5918–5926.
- Dorff TB, Longmate JA, Pal SK, et al. Bevacizumab alone or in combination with TRC105 for patients with refractory metastatic renal cell cancer. Cancer. 2017; 123(23): 4566–4573.
- Galanis E, Anderson SK, Twohy E, et al. Phase I/randomized phase II trial of TRC105 plus bevacizumab versus bevacizumab in recurrent glioblastoma: North Central Cancer Treatment Group N1174 (Alliance). Neurooncol Adv. 2022; 4(1): vdac041.