open access

Vol 42, No 1 (2004)
Original paper
Submitted: 2011-12-19
Published online: 2004-03-30
Get Citation

CD3 receptor modulation in Jurkat leukemic cell line.

Agnieszka Jóźwik, Monika Soroczyńska, Jacek M Witkowski, Ewa Bryl
Folia Histochem Cytobiol 2004;42(1):41-43.

open access

Vol 42, No 1 (2004)
ORIGINAL PAPERS
Submitted: 2011-12-19
Published online: 2004-03-30

Abstract

CD3 antigen is a crucial molecule in T cell signal transduction. Although its expression on cell surface is constitutive, dynamic regulation of TCR-CD3 level is probably the most important mechanism allowing T cells to calibrate their response to different levels of stimuli. In our study we examined the role of two main T cell signal transduction pathways in controlling the surface level of CD3 antigen, one based on protein kinase C activity and the other dependent on calcineurin. As an experimental model we used three clones derived from Jurkat cell line, expressing different levels of CD3 antigen surface expression: CD3(low) (217.6), CD3+(217.9) or CD3(low) (217.7). The cells were stimulated with PMA or ionomycin, acting directly on PKC and calcineurin, respectively. Prior to the stimulation cells were incubated with PKC inhibitor--chelerythrine or calcineurin blocker--cyclosporine A. Changes in CD3 surface expression were measured by flow cytometry. Only PMA and chelerythrine were able to change CD3 expression suggesting important involvement of PKC in the regulation of its expression. To confirm these findings, PKC activity was estimated in Jurkat clones. Our data demonstrated that Jurkat clones with different CD3 expression showed also different PKC activities, so we conclude that PKC-dependent pathway is the main way of controlling CD3 level on Jurkat clones.

Abstract

CD3 antigen is a crucial molecule in T cell signal transduction. Although its expression on cell surface is constitutive, dynamic regulation of TCR-CD3 level is probably the most important mechanism allowing T cells to calibrate their response to different levels of stimuli. In our study we examined the role of two main T cell signal transduction pathways in controlling the surface level of CD3 antigen, one based on protein kinase C activity and the other dependent on calcineurin. As an experimental model we used three clones derived from Jurkat cell line, expressing different levels of CD3 antigen surface expression: CD3(low) (217.6), CD3+(217.9) or CD3(low) (217.7). The cells were stimulated with PMA or ionomycin, acting directly on PKC and calcineurin, respectively. Prior to the stimulation cells were incubated with PKC inhibitor--chelerythrine or calcineurin blocker--cyclosporine A. Changes in CD3 surface expression were measured by flow cytometry. Only PMA and chelerythrine were able to change CD3 expression suggesting important involvement of PKC in the regulation of its expression. To confirm these findings, PKC activity was estimated in Jurkat clones. Our data demonstrated that Jurkat clones with different CD3 expression showed also different PKC activities, so we conclude that PKC-dependent pathway is the main way of controlling CD3 level on Jurkat clones.
Get Citation
About this article
Title

CD3 receptor modulation in Jurkat leukemic cell line.

Journal

Folia Histochemica et Cytobiologica

Issue

Vol 42, No 1 (2004)

Article type

Original paper

Pages

41-43

Published online

2004-03-30

Bibliographic record

Folia Histochem Cytobiol 2004;42(1):41-43.

Authors

Agnieszka Jóźwik
Monika Soroczyńska
Jacek M Witkowski
Ewa Bryl

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl