Basic fibroblast growth factor and its receptors in human embryonic stem cells.

Petr Dvorak, Ales Hampl


Human embryonic stem cells (hESCs) are pluripotent stem cells with long-lasting capacity to self-renew and differentiate into various cell types of endodermal, ectodermal or mesodermal origin. Unlike mouse ESCs (mESCs), which can be maintained in an undifferentiated state simply by adding leukemia inhibitory factor (LIF) into the culture medium, hESCs are notorious for the sustained willingness to differentiate and not yet clearly defined signaling pathways that are crucial for their "stemness". Presently, our knowledge involves only limited number of growth factor signaling pathways that appear to be biologically relevant for stem cell functions in vitro. These include BMP, TGFbeta, Wnt, and FGF signaling pathway. The purpose of this review is to summarize recent data on the expression of FGFs and their receptors in hESCs, and critically evaluate the potential effects of FGF signals for their undifferentiated growth and/or differentiation in context with our current understanding of FGF/FGFR biology.

By "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: