open access

Vol 46, No 1 (2008)
Original paper
Submitted: 2011-12-19
Published online: 2008-02-26
Get Citation

Temporal regulation of embryonic M-phases.

Jacek Z Kubiak, Franck Bazile, Aude Pascal, Laurent Richard-Parpaillon, Zbigniew Polanski, Maria A Ciemerych, Franck Chesnel
DOI: 10.2478/v10042-008-0001-z
·
Folia Histochem Cytobiol 2008;46(1):5-9.

open access

Vol 46, No 1 (2008)
ORIGINAL PAPERS
Submitted: 2011-12-19
Published online: 2008-02-26

Abstract

Temporal regulation of M-phases of the cell cycle requires precise molecular mechanisms that differ among different cells. This variable regulation is particularly clear during embryonic divisions. The first embryonic mitosis in the mouse lasts twice as long as the second one. In other species studied so far (C. elegans, Sphaerechinus granularis, Xenopus laevis), the first mitosis is also longer than the second, yet the prolongation is less pronounced than in the mouse. We have found recently that the mechanisms prolonging the first embryonic M-phase differ in the mouse and in Xenopus embryos. In the mouse, the metaphase of the first mitosis is specifically prolonged by the unknown mechanism acting similarly to the CSF present in oocytes arrested in the second meiotic division. In Xenopus, higher levels of cyclins B participate in the M-phase prolongation, however, without any cell cycle arrest. In Xenopus embryo cell-free extracts, the inactivation of the major M-phase factor, MPF, depends directly on dissociation of cyclin B from CDK1 subunit and not on cyclin B degradation as was thought before. In search for other mitotic proteins behaving in a similar way as cyclins B we made two complementary proteomic screens dedicated to identifying proteins ubiquitinated and degraded by the proteasome upon the first embryonic mitosis in Xenopus laevis. The first screen yielded 175 proteins. To validate our strategy we are verifying now which of them are really ubiquitinated. In the second one, we identified 9 novel proteins potentially degraded via the proteasome. Among them, TCTP (Translationally Controlled Tumor Protein), a 23-kDa protein, was shown to be partially degraded during mitosis (as well as during meiotic exit). We characterized the expression and the role of this protein in Xenopus, mouse and human somatic cells, Xenopus and mouse oocytes and embryos. TCTP is a mitotic spindle protein positively regulating cellular proliferation. Analysis of other candidates is in progress.

Abstract

Temporal regulation of M-phases of the cell cycle requires precise molecular mechanisms that differ among different cells. This variable regulation is particularly clear during embryonic divisions. The first embryonic mitosis in the mouse lasts twice as long as the second one. In other species studied so far (C. elegans, Sphaerechinus granularis, Xenopus laevis), the first mitosis is also longer than the second, yet the prolongation is less pronounced than in the mouse. We have found recently that the mechanisms prolonging the first embryonic M-phase differ in the mouse and in Xenopus embryos. In the mouse, the metaphase of the first mitosis is specifically prolonged by the unknown mechanism acting similarly to the CSF present in oocytes arrested in the second meiotic division. In Xenopus, higher levels of cyclins B participate in the M-phase prolongation, however, without any cell cycle arrest. In Xenopus embryo cell-free extracts, the inactivation of the major M-phase factor, MPF, depends directly on dissociation of cyclin B from CDK1 subunit and not on cyclin B degradation as was thought before. In search for other mitotic proteins behaving in a similar way as cyclins B we made two complementary proteomic screens dedicated to identifying proteins ubiquitinated and degraded by the proteasome upon the first embryonic mitosis in Xenopus laevis. The first screen yielded 175 proteins. To validate our strategy we are verifying now which of them are really ubiquitinated. In the second one, we identified 9 novel proteins potentially degraded via the proteasome. Among them, TCTP (Translationally Controlled Tumor Protein), a 23-kDa protein, was shown to be partially degraded during mitosis (as well as during meiotic exit). We characterized the expression and the role of this protein in Xenopus, mouse and human somatic cells, Xenopus and mouse oocytes and embryos. TCTP is a mitotic spindle protein positively regulating cellular proliferation. Analysis of other candidates is in progress.
Get Citation
About this article
Title

Temporal regulation of embryonic M-phases.

Journal

Folia Histochemica et Cytobiologica

Issue

Vol 46, No 1 (2008)

Article type

Original paper

Pages

5-9

Published online

2008-02-26

Page views

2542

Article views/downloads

1884

DOI

10.2478/v10042-008-0001-z

Bibliographic record

Folia Histochem Cytobiol 2008;46(1):5-9.

Authors

Jacek Z Kubiak
Franck Bazile
Aude Pascal
Laurent Richard-Parpaillon
Zbigniew Polanski
Maria A Ciemerych
Franck Chesnel

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp z o.o., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl