open access

Vol 47, No 1 (2009)
ORIGINAL PAPERS
Published online: 2009-05-08
Submitted: 2011-12-19
Get Citation

Morphology and physiology of the epiphyseal growth plate.

Franciszek Burdan, Justyna Szumiło, Agnieszka Korobowicz, Rabia Farooquee, Sagar Patel, Ankit Patel, Anjalee Dave, Michał Szumiło, Michał Solecki, Robert Klepacz, Jarosław Dudka
DOI: 10.2478/v10042-009-0007-1
·
Folia Histochem Cytobiol 2009;47(1):5-16.

open access

Vol 47, No 1 (2009)
ORIGINAL PAPERS
Published online: 2009-05-08
Submitted: 2011-12-19

Abstract

The epiphyseal growth plate develops from the cartilaginous-orientated mesenchymal cells that express SOX family genes. This multilayer structure is formed by the proliferation and hypertrophy of cells that synthesize the extracellular matrix composed of collagen (mainly type II, IX, X, XI) and proteoglycans (aggrecan, decorin, annexin II, V and VI). The resting zone is responsible for protein synthesis and maintaining a germinal structure. In the proliferative zone, cells rapidly duplicate. The subsequent morphological changes take place in the transformation zone, divided into the upper and lower hypertrophic layers. In the degenerative zone, the mineralization process becomes intensive due to increased release of alkaline phosphate, calcium and matrix vesicles by terminally differentiated chondrocytes and some other factors e.g., metaphyseal ingrowth vessels. At this level, as well as in the primary and secondary spongiosa zones, chondrocytes undergo apoptosis and are physiologically eliminated. Unlike adult cartilage, in fetal and early formed growth plates, unusual forms such as authophagal bodies, paralysis and dark chondrocytes were also observed. Their ultrastructure differs greatly from apoptotic and normal cartilage cells. Chondrocyte proliferation and differentiation are regulated by various endocrine, paracrine, and autocrine agents such as growth, thyroid and sex hormones, beta-catenin, bone morphogenetic proteins, insulin-like growth factor, iodothyronine deiodinase, leptin, nitric oxide, transforming growth factor beta and vitamin D metabolites. However, the most significant factor is parathyroid hormone-related protein (PTHrP) which is synthesized in the perichondrium by terminally differentiated chondrocytes. Secondary to activation of PTH/PTHrP receptors, PTHrP stimulates cell proliferation by G protein activation and delays their transformation into prehypertrophic and hypertrophic chondrocytes. When proliferation is completed, chondrocytes release Indian hedgehog (Ihh), which stimulates PTHrP synthesis via a feedback loop. Any disturbances of the epiphyseal development and its physiology result in various skeletal abnormalities known as dysplasia.

Abstract

The epiphyseal growth plate develops from the cartilaginous-orientated mesenchymal cells that express SOX family genes. This multilayer structure is formed by the proliferation and hypertrophy of cells that synthesize the extracellular matrix composed of collagen (mainly type II, IX, X, XI) and proteoglycans (aggrecan, decorin, annexin II, V and VI). The resting zone is responsible for protein synthesis and maintaining a germinal structure. In the proliferative zone, cells rapidly duplicate. The subsequent morphological changes take place in the transformation zone, divided into the upper and lower hypertrophic layers. In the degenerative zone, the mineralization process becomes intensive due to increased release of alkaline phosphate, calcium and matrix vesicles by terminally differentiated chondrocytes and some other factors e.g., metaphyseal ingrowth vessels. At this level, as well as in the primary and secondary spongiosa zones, chondrocytes undergo apoptosis and are physiologically eliminated. Unlike adult cartilage, in fetal and early formed growth plates, unusual forms such as authophagal bodies, paralysis and dark chondrocytes were also observed. Their ultrastructure differs greatly from apoptotic and normal cartilage cells. Chondrocyte proliferation and differentiation are regulated by various endocrine, paracrine, and autocrine agents such as growth, thyroid and sex hormones, beta-catenin, bone morphogenetic proteins, insulin-like growth factor, iodothyronine deiodinase, leptin, nitric oxide, transforming growth factor beta and vitamin D metabolites. However, the most significant factor is parathyroid hormone-related protein (PTHrP) which is synthesized in the perichondrium by terminally differentiated chondrocytes. Secondary to activation of PTH/PTHrP receptors, PTHrP stimulates cell proliferation by G protein activation and delays their transformation into prehypertrophic and hypertrophic chondrocytes. When proliferation is completed, chondrocytes release Indian hedgehog (Ihh), which stimulates PTHrP synthesis via a feedback loop. Any disturbances of the epiphyseal development and its physiology result in various skeletal abnormalities known as dysplasia.
Get Citation
About this article
Title

Morphology and physiology of the epiphyseal growth plate.

Journal

Folia Histochemica et Cytobiologica

Issue

Vol 47, No 1 (2009)

Pages

5-16

Published online

2009-05-08

DOI

10.2478/v10042-009-0007-1

Bibliographic record

Folia Histochem Cytobiol 2009;47(1):5-16.

Authors

Franciszek Burdan
Justyna Szumiło
Agnieszka Korobowicz
Rabia Farooquee
Sagar Patel
Ankit Patel
Anjalee Dave
Michał Szumiło
Michał Solecki
Robert Klepacz
Jarosław Dudka

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl