English Polski
Tom 15, Nr 5 (2020)
Praca badawcza (oryginalna)
Opublikowany online: 2020-12-30

dostęp otwarty

Wyświetlenia strony 709
Wyświetlenia/pobrania artykułu 461
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Sztywność tętnic szyjnych u pacjentów z cukrzycą typu 2

Zbigniew Bociąga1, Joanna Jaroch1, Małgorzata Wilczyńska2, Ewa Kruszyńska1, Maria Łoboz-Rudnicka1, Barbara Rzyczkowska1, Izabella Uchmanowicz3, Krystyna Łoboz-Grudzień3
Folia Cardiologica 2020;15(5):333-342.

Streszczenie

Zmiany czynnościowe tętnic szyjnych, które są wyrażone wskaźnikami sztywności, są marekrem subklinicznego uszkodzenia narządowego u pacjentów z cukrzycą typu 2 (T2D) Istnieją kontrowersje w jakim stopniu cukrzyca per se a w jakim stopniu inne czynniki ryzyka miażdżycy wpływają na sztywność naczyń. Celem pracy była ocena sztywności tętnic szyjnych u pacjentów z niepowikłaną T2D. Zbadaliśmy zależność między klasycznymi czynnikami ryzyka sercowo-naczyniowego i wartością hemoglobiny glikowanej a sztywnoścą tętnic w cukrzycy. Materiał stanowiło 168 chorych, w tym 84 pacjentów z cukrzycą typu 2 oraz 84 zdrowe osoby stanowiące grupę kontrolną. Metodą echo-tracking oceniono sztywność tętnic szyjnych za pomocą następujących parametrów: β, Ep, AC, AI, PWV-β. Pacjenci z cukrzycą typu 2 mieli istotnie wyższe wartości wskaźników sztywności tętnic szyjnych (β stiffness, EP, AI, PWV-β) w porównaniu do grupy kontrolnej. W grupie pacjentów z cukrzycą w analizie regresji wielokrotnej uzyskano natępuące istotne modele parametrów sztywności: β = 1,8 + 0,096 ⋅ PP + 0,07 ⋅ wiek; R2 = 0,166, Ep = 16,7 + 1,852 ⋅ PP; R2= 0,286, AC = 1,9 – 0,005 ⋅ Ps - 0,007 ⋅ HR + 0,14 ⋅ Papierosy; R2 = 0,165, AI = 18,0 - 0,80 ⋅ BMI + 0,40 ⋅ wiek; R2 = 0,147. PWV-β = -0,4 + 0,77 ⋅ Ps – 0,72 ⋅ MAP – 0,50 ⋅ PP + 0,03 ⋅ HR; R2 = 0,235, Wnioski: T2D jest silnym niezależnym czynnikiem sztywności tętnic. U pacjentów z T2D niezależnymi determinanatmi parametrów sztywności tętnic były wiek, SBP, MBP, PP, HR, BMI oraz palenie papierosów. Nie tylko kontrola glikemii, ale także wieloczynnikowa strategia prewencyjna może odgrywać istotną rolę w zapobieganiu rozwojowi sztywności naczyń oraz subklinicznym uszkodzeniom narządowym w cukrzycy.

Artykuł dostępny w formacie PDF

Pokaż PDF (angielski) Pobierz plik PDF

Referencje

  1. Rydén L, Grant PJ, Anker SD. Authors/Task Force Members. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur Heart J. 2013; 34(39): 3035–3087.
  2. Blankenhorn DH, Kramsch DM. Reversal of atherosis and sclerosis. The two components of atherosclerosis. Circulation. 1989; 79(1): 1–7.
  3. Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005; 25(5): 932–943.
  4. Zieman SJ, Kass DA. Advanced glycation endproduct crosslinking in the cardiovascular system: potential therapeutic target for cardiovascular disease. Drugs. 2004; 64(5): 459–470.
  5. Stehouwer CD, Ferreira I. Diabetes, lipids and other risk factors. In: Safar ME, O’Rourke MF. ed. Arterial stiffness in hypertension. Elsevier, London 2006: 427–456.
  6. Cruickshank K, Riste L, Anderson SG, et al. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation. 2002; 106(16): 2085–2090.
  7. Choi SW, Shin MH, Yun WJ, et al. Association between hemoglobin A1c, carotid atherosclerosis, arterial stiffness, and peripheral arterial disease in Korean type 2 diabetic patients. J Diabetes Complications. 2011; 25(1): 7–13.
  8. Chen Y, Huang Y, Li X, et al. Association of arterial stiffness with HbA1c in 1,000 type 2 diabetic patients with or without hypertension. Endocrine. 2009; 36(2): 262–267.
  9. Genuth S, Eastman R, Kahn R, et al. American Diabetes Association. Implications of the United kingdom prospective diabetes study. Diabetes Care. 2003; 26(Suppl 1): S28–S32.
  10. Devereux RB, Alonso D, Lutas E, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986; 57(6): 450–458.
  11. Pignoli P, Tremoli E, Poli A, et al. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation. 1986; 74(6): 1399–1406.
  12. Sugawara M, Niki K, Furuhata H, et al. Relationship between the pressure and diameter of the carotid artery in humans. Heart Vessels. 2000; 15(1): 49–51.
  13. Jaroch J, Rzyczkowska B, Bociąga Z, et al. The relationship of carotid arterial stiffness to left ventricular diastolic dysfunction in untreated hypertension. Kardiol Pol. 2012; 70(3): 223–231.
  14. Magda SL, Ciobanu AO, Florescu M, et al. Comparative reproducibility of the noninvasive ultrasound methods for the assessment of vascular function. Heart Vessels. 2013; 28(2): 143–150.
  15. Bowie A, Owens D, Collins P, et al. Glycosylated low density lipoprotein is more sensitive to oxidation: implications for the diabetic patient? Atherosclerosis. 1993; 102(1): 63–67.
  16. Ceriello A, Quatraro A, Giugliano D. New insights on non-enzymatic glycosylation may lead to therapeutic approaches for the prevention of diabetic complications. Diabet Med. 1992; 9(3): 297–299.
  17. Vlachopoulos C, Terentes-Printzios D, Stefanadis C. Arterial stiffness and carotid intima-media thickness: together they stand. Hypertens Res. 2010; 33(4): 291–292.
  18. Palombo C, Malshi E, Morizzo C. Association between local carotid artery stiffness and aortic stiffness in subjects with cardiovascular risk factors. Eur J Echocardiogr. 2008; 9(Suppl): S65 (abstract).
  19. Laurent S, Cockcroft J, Van Bortel L, et al. European Network for Non-invasive Investigation of Large Arteries. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006; 27(21): 2588–2605.
  20. Antonini-Canterin F, Carerj S, Di Bello V, et al. Research Group of the Italian Society of Cardiovascular Echography (SIEC). Arterial stiffness and ventricular stiffness: a couple of diseases or a coupling disease? A review from the cardiologist's point of view. Eur J Echocardiogr. 2009; 10(1): 36–43.
  21. Avgeropoulou C, Illmann A, Schumm-Draeger PM, et al. Assessment of arterio-ventricular coupling by tissue Doppler and wave intensity in type 2 diabetes. The British Journal of Diabetes & Vascular Disease. 2016; 6(6): 271–278.
  22. Avolio AP, Deng FQ, Li WQ, et al. Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China. Circulation. 1985; 71(2): 202–210.
  23. Cecelja M, Chowienczyk P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension. 2009; 54(6): 1328–1336.
  24. Sa Cunha R, Pannier B, Benetos A, et al. Association between high heart rate and high arterial rigidity in normotensive and hypertensive subjects. J Hypertens. 1997; 15(12 Pt 1): 1423–1430.
  25. Tanokuchi S, Okada S, Ota Z. Factors related to aortic pulse-wave velocity in patients with non-insulin-dependent diabetes mellitus. J Int Med Res. 1995; 23(6): 423–430.
  26. Takahara M, Katakami N, Osonoi T, et al. Different impacts of cardiovascular risk factors on arterial stiffness versus arterial wall thickness in Japanese patients with type 2 diabetes mellitus. J Atheroscler Thromb. 2015; 22(9): 971–980.
  27. Jacob MP. Extracellular matrix remodeling and matrix metalloproteinases in the vascular wall during aging and in pathological conditions. Biomed Pharmacother. 2003; 57(5-6): 195–202.
  28. Greenwald SE. Ageing of the conduit arteries. J Pathol. 2007; 211(2): 157–172.
  29. McEniery CM, Hall IR, Qasem A, et al. ACCT Investigators. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol. 2005; 46(9): 1753–1760.
  30. Taniwaki H, Kawagishi T, Emoto M, et al. Correlation between the intima-media thickness of the carotid artery and aortic pulse-wave velocity in patients with type 2 diabetes. Vessel wall properties in type 2 diabetes. Diabetes Care. 1999; 22(11): 1851–1857.
  31. Kumeda Y, Inaba M, Shoji S, et al. Significant correlation of glycated albumin, but not glycated haemoglobin, with arterial stiffening in haemodialysis patients with type 2 diabetes. Clin Endocrinol (Oxf). 2008; 69(4): 556–561.
  32. Benetos A, Laurent S, Hoeks AP, et al. Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. Arterioscler Thromb. 1993; 13(1): 90–97.
  33. McCance DR, Ritchie CM, Kennedy L. Is HbA1 measurement superfluous in NIDDM? Diabetes Care. 1988; 11(6): 512–514.
  34. Larsen JR, Brekke M, Bergengen L, et al. Mean HbA1c over 18 years predicts carotid intima media thickness in women with type 1 diabetes. Diabetologia. 2005; 48(4): 776–779.
  35. Standl E, Schnell O, Ceriello A. Postprandial hyperglycemia and glycemic variability: should we care? Diabetes Care. 2011; 34 Suppl 2: S120–S127.
  36. Bonora E, Muggeo M. Postprandial blood glucose as a risk factor for cardiovascular disease in type II diabetes: the epidemiological evidence. Diabetologia. 2001; 44(12): 2107–2114.
  37. Lefèbvre PJ, Scheen AJ. The postprandial state and risk of cardiovascular disease. Diabetic Medicine. 1998; 15(S4): S63–S68, doi: 10.1002/(sici)1096-9136(1998120)15:4+3.3.co;2-z.
  38. Muramatsu J, Kobayashi A, Hasegawa N, et al. Hemodynamic changes associated with reduction in total cholesterol by treatment with the HMG-CoA reductase inhibitor pravastatin. Atherosclerosis. 1997; 130(1-2): 179–182.
  39. Raison J, Rudnichi A, Safar ME. Effects of atorvastatin on aortic pulse wave velocity in patients with hypertension and hypercholesterolaemia: a preliminary study. J Hum Hypertens. 2002; 16(10): 705–710.
  40. van Popele NM, Mattace-Raso FUS, Vliegenthart R, et al. Association between arterial stiffness and atherosclerosis: the Rotterdam Study. Stroke. 2001; 32(2): 454–460.
  41. Zureik M, Temmar M, Adamopoulos C, et al. Carotid plaques, but not common carotid intima-media thickness, are independently associated with aortic stiffness. J Hypertens. 2002; 20(1): 85–93.
  42. Zureik M, Bureau JM, Temmar M, et al. Echogenic carotid plaques are associated with aortic arterial stiffness in subjects with subclinical carotid atherosclerosis. Hypertension. 2003; 41(3): 519–527.
  43. Borow KM, Newburger JW. Noninvasive estimation of central aortic pressure using the oscillometric method for analyzing systemic artery pulsatile blood flow: comparative study of indirect systolic, diastolic, and mean brachial artery pressure with simultaneous direct ascending aortic pressure measurements. Am Heart J. 1982; 103(5): 879–886.