English Polski
Vol 15, No 3 (2020)
Review paper
Published online: 2020-09-28

open access

Page views 750
Article views/downloads 827
Get Citation

Connect on Social Media

Connect on Social Media

Impedance technics in medical practice

Konrad Siebert1
Folia Cardiologica 2020;15(3):236-242.

Abstract

Hemodynamics monitoring provides important information about the performance of the heart, including preload, afterload, contractility, and pump efficiency. The most popular techniques used to be based on invasive methods, such as the Fick’s formula, thermodilution, and invasive intravascular pressure monitoring, and noninvasive ultrasound-based methods such as echocardiography, transesophageal Doppler monitoring of stroke volume, and peripheral arterial tonometry. Impedance methods combined with opportunities provided by telemedicine could bring new quality to the medical practice.

Article available in PDF format

View PDF Download PDF file

References

  1. Capek JM, Roy RJ. Noninvasive measurement of cardiac output using partial CO2 rebreathing. IEEE Trans Biomed Eng. 1988; 35(9): 653–661.
  2. Gedeon A, Krill P, Kristensen J, et al. Noninvasive cardiac output determined with a new method based on gas exchange measurements and carbon dioxide rebreathing: a study in animals/pigs. J Clin Monit. 1992; 8(4): 267–278.
  3. Siebert J, Wojnowski M, Zandstra D. Carbon dioxide rebreathing as a tool for noninvasive cardiac output determination. Informacja od autorów. OLVG, Amsterdam 1990.
  4. Innocor ®INERT GAS REBREATHING METHOD COR-MAN-0000-004-IN / EN Issue A, Rev. 9 2013-0.
  5. Corte TJ, Wells AU, Gatzoulis MA, et al. Non-invasive assessment of pulmonary blood flow using an inert gas rebreathing device in fibrotic lung disease. Thorax. 2010; 65(4): 341–345.
  6. Saur J, Trinkmann F, Doesch C, et al. The impact of pulmonary disease on noninvasive measurement of cardiac output by the inert gas rebreathing method. Lung. 2010; 188(5): 433–440.
  7. Stach K, Michels JD, Doesch C, et al. Non-invasive measurement of hemodynamic response to postural stress using inert gas rebreathing. Biomed Rep. 2019; 11(3): 98–102.
  8. Gordon D, Swain P, Keiller D, et al. Quantifying the effects of four weeks of low-volume high-intensity sprint interval training on V̇O2max through assessment of hemodynamics. J Sports Med Phys Fitness. 2020; 60(1): 53–61.
  9. Siebert J, Zielińska D, Trzeciak B, et al. Haemodynamic response during exercise testing in patients with coronary artery disease undergoing a cardiac rehabilitation programme. . Biology of Sport. 2011; 28(3): 189–193.
  10. Siebert J, Zielińska D, Trzeciak B, et al. Zastosowanie kardiografii impedancyjnej w ocenie odpowiedzi hemodynamicznej podczas spiroergometrycznej próby wysiłkowej u pacjenta z niewydolnością serca — opis przypadku. Kardiol Pol. 2010; 68(3): 311–313.
  11. Siebert J. red. Kardiografia impedancyjna przewodnik dla lekarzy. Via Medica, Gdańsk : 2006.
  12. Fuii M, Nakajima K, Sakamoto K. Orientation and deformation of erythrocytes in flowing blood. Ann NY Acad Sci. 1999; 873: 245–261.
  13. Geselowitz DB. An application of electrocardiographic lead theory to impedance plethysmography. IEEE Trans Biomed Eng. 1971; 18(1): 38–41.
  14. Lehr J. A vector derivation useful in impedance plethysmographic field calculations. IEEE Trans Biomed Eng. 1972; BME-19(2): 156–157.
  15. Mortarelli JR. A generalization of the Geselowitz relationship useful in impedance plethysmographic field calculations. IEEE Trans Biomed Eng. 1980; BME-27(11): 665–667.
  16. Bernstein DP. A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Crit Care Med. 1986; 14(10): 904–909.
  17. Kubicek WG, Karnegis JN, Patterson RP, et al. Development and evaluation of an impedance cardiac output system. Aerosp Med. 1966; 37(12): 1208–1212.
  18. Trinkmann F, Berger M, Doesch C, et al. Comparison of electrical velocimetry and cardiac magnetic resonance imaging for the non-invasive determination of cardiac output. J Clin Monit Comput. 2016; 30(4): 399–408.
  19. Siebert J, Trzeciak B, Zielińska D. Zastosowanie kardiografii impedancyjnej do prób wysiłkowych w rehabilitacji kardiologicznej. In: Siebert J. ed. Kardiografia impedancyjna — przewodnik dla lekarzy. Gdańsk, Via Medica 2006: 71–88.
  20. Krzesiński P, Galas A, Gielerak G, et al. Haemodynamic effects of anaemia in patients with acute decompensated heart failure. Cardiol Res Pract. 2020; 2020: 9371967.
  21. Krzesiński P, Gielerak GG, Kowal JJ. A "patient-tailored" treatment of hypertension with use of impedance cardiography: a randomized, prospective and controlled trial. Med Sci Monit. 2013; 19: 242–250.
  22. Egbe AC, Wajih Ullah M, Afzal A, et al. Feasibility, reproducibility and accuracy of electrical velocimetry for cardiac output assessment in congenital heart disease. Int J Cardiol Heart Vasc. 2020; 26: 100464.
  23. Kostrzewska M, Grabicki M, Piorunek T, et al. Cardiovascular function in obstructive sleep apnea patients with controlled hypertension. Adv Exp Med Biol. 2020; 1271: 99–106.
  24. Siebert J, Kowalczyk W, Trzeciak B, et al. Bezdech senny czy blok przedsionkowo-komorowy i nadciśnienie tętnicze? Kardiol Pol. 2010; 68(2): 197–200.
  25. Louvaris Z, Spetsioti S, Andrianopoulos V, et al. Cardiac output measurement during exercise in COPD: a comparison of dye dilution and impedance cardiography. Clin Respir J. 2019; 13(4): 222–231.
  26. Berton DC, Marques RD, Palmer B, et al. Effects of lung deflation induced by tiotropium/olodaterol on the cardiocirculatory responses to exertion in COPD. Respir Med. 2019; 157: 59–68.
  27. Tonelli AR, Alnuaimat H, Li N, et al. Value of impedance cardiography in patients studied for pulmonary hypertension. Lung. 2011; 189(5): 369–375.
  28. Panagiotou M, Vogiatzis I, Jayasekera G, et al. Validation of impedance cardiography in pulmonary arterial hypertension. Clin Physiol Funct Imaging. 2018; 38(2): 254–260.
  29. U.S. Food and Drug Administration Device Classification Regulation Number 870.2770, Decision Date 02/12/2014.
  30. Lewicki L, Fijalkowska M, Karwowski M, et al. The non-invasive evaluation of heart function in patients with an acute myocardial infarction: The role of impedance cardiography. Cardiol J. 2019 [Epub ahead of print].
  31. Peacock WF, Summers RL, Vogel J, et al. Impact of impedance cardiography on diagnosis and therapy of emergent dyspnea: the ED-IMPACT trial. Acad Emerg Med. 2006; 13(4): 365–371.
  32. Shochat MK, Shotan A, Blondheim DS, et al. Non-invasive lung IMPEDANCE-guided preemptive treatment in chronic heart failure patients: a randomized controlled trial (IMPEDANCE-HF Trial). J Card Fail. 2016; 22(9): 713–722.
  33. Amir O, Ben-Gal T, Weinstein JM, et al. Evaluation of remote dielectric sensing (ReDS) technology-guided therapy for decreasing heart failure re-hospitalizations. Int J Cardiol. 2017; 240: 279–284.
  34. Darling CE, Dovancescu S, Saczynski JS, et al. Bioimpedance-based heart failure deterioration prediction using a prototype fluid accumulation Vest-Mobile Phone Dyad: an observational study. JMIR Cardio. 2017; 1(1): e1.
  35. https://amulet.wim.mil.pl/english (May 6, 2020).
  36. Siebenmann C, Rasmussen P, Sørensen H, et al. Cardiac output during exercise: a comparison of four methods. Scand J Med Sci Sports. 2015; 25(1): e20–e27.
  37. Louvaris Z, Spetsioti S, Andrianopoulos V, et al. Cardiac output measurement during exercise in COPD: a comparison of dye dilution and impedance cardiography. Clin Respir J. 2019; 13(4): 222–231.
  38. Wang L, Yu CM, et al. Prediction of CHF hospitalization by ambulatory intrathoracic impedance measurement in CHF patients is feasible using pacemaker or ICD lead systems. PACE. 2003; 26(Pt II): 959.
  39. Abraham WT. Intrathoracic impedance monitoring for early detection of impending heart failure decompensation. Congest Heart Fail. 2007; 13(2): 113–115.
  40. Sarkar S, Hettrick DA, Koehler J, et al. Improved algorithm to detect fluid accumulation via intrathoracic impedance monitoring in heart failure patients with implantable devices. J Card Fail. 2011; 17(7): 569–576.