English Polski
Tom 14, Nr 5 (2019)
Artykuł przeglądowy
Opublikowany online: 2019-10-31

dostęp otwarty

Wyświetlenia strony 503
Wyświetlenia/pobrania artykułu 1679
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Zaburzenia rytmu i funkcji układu autonomicznego w przebiegu ostrych i przewlekłych chorób z zajęciem prawej komory serca

Monika Lisicka1, Joanna Radochońska1, Piotr Bienias1
DOI: 10.5603/FC.2019.0101
Folia Cardiologica 2019;14(5):445-455.

Streszczenie

Prawa i lewa komora różnią się w swojej anatomii i funkcji, co ma swój wyraz w odmiennej budowie miokardium, zawartości elementów układu bodźcoprzewodzącego oraz dystrybucji receptorów autonomicznego układu nerwowego. Wymienione różnice sprawiają, że choroby przebiegające głównie z zajęciem prawych jam serca, takie jak: ostra zatorowość płucna, przewlekłe nadciśnienie płucne, zawał prawej komory serca czy arytmogenna kardiomiopatia prawokomorowa, a także wybrane wrodzone wady serca czy niektóre choroby układowe tkanki łącznej, odróżniają się na tle innych schorzeń swoją patofizjologią, przebiegiem klinicznym oraz potencjalnymi komplikacjami. Prowadzi to również do zwiększonej częstości wywoływania zaburzeń rytmu serca, przy czym dla poszczególnych jednostek charakterystyczne są inne rodzaje arytmii. W celu ułatwienia klinicystom wyboru metod diagnostycznych i leczniczych w poniższym opracowaniu zebrano aktualną wiedzę na temat zaburzeń rytmu oraz funkcji autonomicznego układu nerwowego serca w schorzeniach przebiegających z zajęciem prawej komory.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996; 93(5): 1043–1065.
  2. Bauer A, Malik M, Schmidt G, et al. Heart rate turbulence: standards of measurement, physiological interpretation, and clinical use: International Society for Holter and Noninvasive Electrophysiology Consensus. J Am Coll Cardiol. 2008; 52(17): 1353–1365.
  3. Konstantinides SV. 2014 ESC Guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J. 2014; 35(45): 3145–3146.
  4. Ng AC, Adikari D, Yuan D, et al. The prevalence and incidence of atrial fibrillation in patients with acute pulmonary embolism. PLoS One. 2016; 11(3): e0150448.
  5. Krajewska A, Ptaszynska-Kopczynska K, Kiluk I, et al. Paroxysmal atrial fibrillation in the course of acute pulmonary embolism: clinical significance and impact on prognosis. Biomed Res Int. 2017; 2017: 5049802.
  6. Hayıroğlu Mİ, Keskin M, Uzun AO, et al. Long-term antiarrhythmic effects of thrombolytic therapy in pulmonary embolism. Heart Lung Circ. 2017; 26(10): 1094–1100.
  7. Radochońska J, Lisicka M, Bienias P. Zastosowanie elektrokardiografii w ostrych i przewlekłych chorobach z zajęciem prawej komory serca. Folia Cardiol. 2019 Ahead of print.
  8. Keller K, Beule J, Balzer JO, et al. Syncope and collapse in acute pulmonary embolism. Am J Emerg Med. 2016; 34(7): 1251–1257.
  9. Liesching T, O'Brien A. Significance of a syncopal event. Pulmonary embolism. Postgrad Med. 2002; 111(1): 19–20.
  10. Stratmann G, Gregory GA. Neurogenic and humoral vasoconstriction in acute pulmonary thromboembolism. Anesth Analg. 2003; 97(2): 341–354.
  11. Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2015; 37(1): 67–119.
  12. Tongers J, Schwerdtfeger B, Klein G, et al. Incidence and clinical relevance of supraventricular tachyarrhythmias in pulmonary hypertension. Am Heart J. 2007; 153(1): 127–132.
  13. Olsson KM, Nickel NP, Tongers J, et al. Atrial flutter and fibrillation in patients with pulmonary hypertension. Int J Cardiol. 2013; 167(5): 2300–2305.
  14. Handoko ML, de Man FS, Allaart CP, et al. Perspectives on novel therapeutic strategies for right heart failure in pulmonary arterial hypertension: lessons from the left heart. Eur Respir Rev. 2010; 19(115): 72–82.
  15. Witte C, Meyer Zur Heide Genannt Meyer-Arend JU, Andrié R, et al. Heart rate variability and arrhythmic burden in pulmonary hypertension. Adv Exp Med Biol. 2016; 934: 9–22.
  16. Bienias P, Ciurzynski M, Kostrubiec M, et al. Functional class and type of pulmonary hypertension determinate severity of cardiac autonomic dysfunction assessed by heart rate variability and turbulence. Acta Cardiol. 2015; 70(3): 286–296.
  17. Vaillancourt M, Chia P, Sarji S, et al. Autonomic nervous system involvement in pulmonary arterial hypertension. Respir Res. 2017; 18(1): 201.
  18. Bienias P, Kostrubiec M, Rymarczyk Z, et al. Severity of arterial and chronic thromboembolic pulmonary hypertension is associated with impairment of heart rate turbulence. Ann Noninvasive Electrocardiol. 2015; 20(1): 69–78.
  19. Uznańska-Loch B, Wikło K, Trzos E, et al. Advanced and traditional electrocardiographic risk factors in pulmonary arterial hypertension: the significance of ventricular late potentials. Kardiol Pol. 2018; 76(3): 586–593.
  20. Majos E, Dąbrowski R, Szwed H. The right ventricle in patients with chronic heart failure and atrial fibrillation. Cardiol J. 2013; 20(3): 220–226.
  21. Soon E, Toshner M, Mela M, et al. Risk of potentially life-threatening thyroid dysfunction due to amiodarone in idiopathic pulmonary arterial hypertension patients. J Am Coll Cardiol. 2011; 57(8): 997–998.
  22. McGee M, Whitehead N, Martin J, et al. Drug-associated pulmonary arterial hypertension. Clin Toxicol (Phila). 2018; 56(9): 801–809.
  23. Goldstein JA. Acute right ventricular infarction: insights for the interventional era. Curr Probl Cardiol. 2012; 37(12): 533–557.
  24. Kumar V, Sinha S, Kumar P, et al. Short-term outcome of acute inferior wall myocardial infarction with emphasis on conduction blocks: a prospective observational study in Indian population. Anatol J Cardiol. 2017; 17(3): 229–234.
  25. Zehender M, Kasper W, Kauder E, et al. Right ventricular infarction as an independent predictor of prognosis after acute inferior myocardial infarction. N Engl J Med. 1993; 328(14): 981–988.
  26. Shahar K, Darawsha W, Yalonetsky S, et al. Time dependence of the effect of right ventricular dysfunction on clinical outcomes after myocardial infarction: role of pulmonary hypertension. J Am Heart Assoc. 2016; 5(7).
  27. Ibanez B, James S, Agewall S, et al. ESC Scientific Document Group. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018; 39(2): 119–177.
  28. Gorenek B, Lundqvist CB, Terradellas JB, et al. Cardiac arrhythmias in acute coronary syndromes: position paper from the Joint EHRA, ACCA, and EAPCI Task Force. Eur Heart J Acute Cardiovasc Care. 2015; 4(4): 386.
  29. Goldstein JA, Lee DT, Pica MC, et al. Patterns of coronary compromise leading to bradyarrhythmias and hypotension in inferior myocardial infarction. Coron Artery Dis. 2005; 16(5): 265–274.
  30. Rajendran PS, Nakamura K, Ajijola OA, et al. Myocardial infarction induces structural and functional remodelling of the intrinsic cardiac nervous system. J Physiol. 2016; 594(2): 321–341.
  31. Kleiger RE, Miller JP, Bigger JT, et al. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987; 59(4): 256–262.
  32. Haugaa KH, Haland TF, Leren IS, et al. Arrhythmogenic right ventricular cardiomyopathy, clinical manifestations, and diagnosis. Europace. 2016; 18(7): 965–972.
  33. Bauce B, Frigo G, Marcus FI, et al. Comparison of clinical features of arrhythmogenic right ventricular cardiomyopathy in men versus women. Am J Cardiol. 2008; 102(9): 1252–1257.
  34. Bhonsale A, Groeneweg JA, James CA, et al. Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. Eur Heart J. 2015; 36(14): 847–855.
  35. Biernacka EK, Platonov PG, Fronczak A. Should epsilon wave be considered as a major diagnostic criterion in arrhythmogenic right ventricular cardiomyopathy? Kardiol Pol. 2017; 75(3): 191–195.
  36. Bosman LP, Sammani A, James CA, et al. Predicting arrhythmic risk in arrhythmogenic right ventricular cardiomyopathy: a systematic review and meta-analysis. Heart Rhythm. 2018; 15(7): 1097–1107.
  37. Camm CF, James CA, Tichnell C, et al. Prevalence of atrial arrhythmias in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Heart Rhythm. 2013; 10(11): 1661–1668.
  38. Paul M, Meyborg M, Boknik P, et al. Autonomic dysfunction in patients with arrhythmogenic right ventricular cardiomyopathy: biochemical evidence of altered signaling pathways. Pacing Clin Electrophysiol. 2014; 37(2): 173–178.
  39. Paul M, Wichter T, Kies P, et al. Cardiac sympathetic dysfunction in genotyped patients with arrhythmogenic right ventricular cardiomyopathy and risk of recurrent ventricular tachyarrhythmias. J Nucl Med. 2011; 52(10): 1559–1565.
  40. Folino AF, Buja G, Bauce B, et al. Heart rate variability in arrhythmogenic right ventricular cardiomyopathy correlation with clinical and prognostic features. Pacing Clin Electrophysiol. 2002; 25(9): 1285–1292.
  41. Link MS, Laidlaw D, Polonsky B, et al. Ventricular arrhythmias in the North American multidisciplinary study of ARVC: predictors, characteristics, and treatment. J Am Coll Cardiol. 2014; 64(2): 119–125.
  42. Sherwin ED, Abrams DJ. Ebstein anomaly. Card Electrophysiol Clin. 2017; 9(2): 245–254.
  43. Hassan A, Tan NY, Aung H, et al. Outcomes of atrial arrhythmia radiofrequency catheter ablation in patients with Ebstein's anomaly. Europace. 2018; 20(3): 535–540.
  44. Wackel P, Cannon B, Dearani J, et al. Arrhythmia after cone repair for Ebstein anomaly: the Mayo Clinic experience in 143 young patients. Congenit Heart Dis. 2018; 13(1): 26–30.
  45. Khairy P, Aboulhosn J, Gurvitz MZ, et al. Alliance for Adult Research in Congenital Cardiology (AARCC). Arrhythmia burden in adults with surgically repaired tetralogy of Fallot: a multi-institutional study. Circulation. 2010; 122(9): 868–875.
  46. Garson A, Smith RT, Moak JP, et al. Ventricular arrhythmias and sudden death in children. J Am Coll Cardiol. 1985; 5(6 Suppl): 130B–133B.
  47. Maury P, Sacher F, Rollin A, et al. Réseau francophone de rythmologie pédiatrique et congénitale. Ventricular arrhythmias and sudden death in tetralogy of Fallot. Arch Cardiovasc Dis. 2017; 110(5): 354–362.
  48. Villafañe J, Feinstein JA, Jenkins KJ, et al. Adult Congenital and Pediatric Cardiology Section, American College of Cardiology. Hot topics in tetralogy of Fallot. J Am Coll Cardiol. 2013; 62(23): 2155–2166.
  49. Novaković M, Prokšelj K, Starc V, et al. Cardiovascular autonomic dysfunction and carotid stiffness in adults with repaired tetralogy of Fallot. Clin Auton Res. 2017; 27(3): 185–192.
  50. Baskar S, Horne P, Fitzsimmons S, et al. Arrhythmia burden and related outcomes in Eisenmenger syndrome. Congenit Heart Dis. 2017; 12(4): 512–519.
  51. Semizel E, Alehan D, Ozer S, et al. Eisenmenger syndrome: identifying the clues for arrhythmia. Anadolu Kardiyol Derg. 2008; 8(1): 32–37.
  52. Bienias P, Ciurzyński M, Korczak D, et al. [Arrhythmias and conduction disturbances in patients with connective tissue diseases] [Article in Polish]. Kardiol Pol. 2008; 66(2): 194–199.
  53. Bienias P, Ciurzyński M, Kisiel B, et al. Comparison of non-invasive assessment of arrhythmias, conduction disturbances and cardiac autonomic tone in systemic sclerosis and systemic lupus erythematosus. Rheumatol Int. 2019; 39(2): 301–310.
  54. Bienias P, Ciurzyński M, Korczak D, et al. Pulmonary hypertension in systemic sclerosis determines cardiac autonomic dysfunction assessed by heart rate turbulence. Int J Cardiol. 2010; 141(3): 322–325.
  55. Wisłowska M, Sypuła S, Kowalik I. Echocardiographic findings and 24-h electrocardiographic Holter monitoring in patients with nodular and non-nodular rheumatoid arthritis. Rheumatol Int. 1999; 18(5-6): 163–169.