Związek układu serotoninergicznego i układu sercowo-naczyniowego
Streszczenie
Serotonina (5-HT) odgrywa istotną rolę w regulacji układu sercowo-naczyniowego. Leki wpływające na układ serotoninergiczny powszechnie stosuje się w terapii depresji, migreny, choroby Parkinsona czy otyłości. W zależności od rodzaju aktywowanego receptora 5-HT i jego lokalizacji przyjmowanie tych związków może prowadzić do ostrych i przewlekłych skutków. Przykładem takiego oddziaływania jest ostra odpowiedź kardiologiczna na serotoninę, zwana odruchem Bezolda-Jarisha, która prowadzi do bradykardii i hipotonii. Przewlekła ekspozycja na nadmiar serotoniny może natomiast łączyć się z włóknieniem i zwyrodnieniem zastawek serca. W artykule omówiono wpływ aktywacji poszczególnych
receptorów 5-HT na układ sercowo-naczyniowy, działania niepożądane stosowanych leków, a także wskazano nowe
możliwości terapii.
Słowa kluczowe: serotoninaremodeling sercowo-naczyniowyzwyrodnienie zastawekwłóknienieodruch Bezolda-Jarischa
Referencje
- Białkowska M. Leczenie farmakologiczne otyłości — przeszłość, teraźniejszość, przyszłość. Postępy Nauk Medycznych. 2000; 3: 10–14.
- Katzung BG, Masters SB, Trevor A. Farmakologia ogólna i kliniczna, t. 1–2. Czelej, Lublin 2012: 321–327.
- Ramage AG, Villalón CM. 5-hydroxytryptamine and cardiovascular regulation. Trends Pharmacol Sci. 2008; 29(9): 472–481.
- Chiladakis JA, Patsouras N, Manolis AS. The Bezold-Jarisch reflex in acute inferior myocardial infarction: clinical and sympathovagal spectral correlates. Clin Cardiol. 2003; 26(7): 323–328.
- Thames MD, Klopfenstein HS, Abboud FM, et al. Preferential distribution of inhibitory cardiac receptors with vagal afferents to the inferoposterior wall of the left ventricle activated during coronary occlusion in the dog. Circ Res. 1978; 43(4): 512–519.
- Mark AL. The Bezold-Jarisch reflex revisited: clinical implications of inhibitory reflexes originating in the heart. J Am Coll Cardiol. 1983; 1(1): 90–102.
- Kawasaki T, Azuma A, Kuribayashi T, et al. Enhanced vagal modulation and exercise induced ischaemia of the inferoposterior myocardium. Heart. 2006; 92(3): 325–330.
- Shimizu Y, Minatoguchi S, Hashimoto K, et al. The role of serotonin in ischemic cellular damage and the infarct size-reducing effect of sarpogrelate, a 5-hydroxytryptamine-2 receptor blocker, in rabbit hearts. J Am Coll Cardiol. 2002; 40(7): 1347–1355.
- Wei JY, Markis JE, Malagold M, et al. Cardiovascular reflexes stimulated by reperfusion of ischemic myocardium in acute myocardial infarction. Circulation. 1983; 67(4): 796–801.
- Clozel JP, Pisarri TE, Coleridge HM, et al. Reflex coronary vasodilation evoked by chemical stimulation of cardiac afferent vagal C fibres in dogs. J Physiol. 1990; 428: 215–232.
- Qvigstad E, Brattelid T, Sjaastad I, et al. Appearance of a ventricular 5-HT4 receptor-mediated inotropic response to serotonin in heart failure. Cardiovasc Res. 2005; 65(4): 869–878.
- Levy FO, Qvigstad E, Krobert KA, et al. Effects of serotonin in failing cardiac ventricle: signalling mechanisms and potential therapeutic implications. Neuropharmacology. 2008; 55(6): 1066–1071.
- Birkeland JA, Swift F, Tovsrud N, et al. Serotonin increases L-type Ca2+ current and SR Ca2+ content through 5-HT4 receptors in failing rat ventricular cardiomyocytes. Am J Physiol Heart Circ Physiol. 2007; 293(4): 2367–2376.
- Ayme-Dietrich E, Aubertin-Kirch G, Maroteaux L, et al. Cardiovascular remodeling and the peripheral serotonergic system. Arch Cardiovasc Dis. 2017; 110(1): 51–59.
- Ayme-Dietrich E, Marzak H, Lawson R, et al. Contribution of serotonin to cardiac remodeling associated with hypertensive diastolic ventricular dysfunction in rats. J Hypertens. 2015; 33(11): 2310–2321.
- Yabanoglu S, Akkiki M, Seguelas MH, et al. Platelet derived serotonin drives the activation of rat cardiac fibroblasts by 5-HT2A receptors. J Mol Cell Cardiol. 2009; 46(4): 518–525.
- Jaffré F, Callebert J, Sarre A, et al. Involvement of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation: control of interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha cytokine production by ventricular fibroblasts. Circulation. 2004; 110(8): 969–974.
- Marzak H, Ayme-Dietrich E, Lawson R, et al. Old spontaneously hypertensive rats gather together typical features of human chronic left-ventricular dysfunction with preserved ejection fraction. J Hypertens. 2014; 32(6): 1307–1316.
- Manni ME, Zazzeri M, Musilli C, et al. Exposure of cardiomyocytes to angiotensin II induces over-activation of monoamine oxidase type A: implications in heart failure. Eur J Pharmacol. 2013; 718(1–3): 271–276.
- Rouzaud-Laborde C, Delmas C, Pizzinat N, et al. Platelet activation and arterial peripheral serotonin turnover in cardiac remodeling associated to aortic stenosis. Am J Hematol. 2015; 90(1): 15–19.
- Klöppel G, Perren A, Heitz PU. The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Ann N Y Acad Sci. 2004; 1014: 13–27.
- Bhattacharyya S, Davar J, Dreyfus G, et al. Carcinoid heart disease. Circulation. 2007; 116(24): 2860–2865.
- Westberg G, Wängberg B, Ahlman H, et al. Prediction of prognosis by echocardiography in patients with midgut carcinoid syndrome. Br J Surg. 2001; 88(6): 865–872.
- Bhattacharyya S, Toumpanakis C, Chilkunda D, et al. Risk factors for the development and progression of carcinoid heart disease. Am J Cardiol. 2011; 107(8): 1221–1226.
- Pellikka PA, Tajik AJ, Khandheria BK, et al. Carcinoid heart disease. Clinical and echocardiographic spectrum in 74 patients. Circulation. 1993; 87(4): 1188–1196.
- Barzilla JE, Acevedo FE, Grande-Allen KJ. Organ culture as a tool to identify early mechanisms of serotonergic valve disease. J Heart Valve Dis. 2010; 19(5): 626–635.
- Balachandran K, Bakay MA, Connolly JM, et al. Aortic valve cyclic stretch causes increased remodeling activity and enhanced serotonin receptor responsiveness. Ann Thorac Surg. 2011; 92(1): 147–153.
- Sauls K, de Vlaming A, Harris BS, et al. Developmental basis for filamin-A-associated myxomatous mitral valve disease. Cardiovasc Res. 2012; 96(1): 109–119.
- García-Pedraza JÁ, García M, Martín ML, et al. The role of endothelium-derived hyperpolarizing factor and cyclooxygenase pathways in the inhibitory serotonergic response to the pressor effect elicited by sympathetic stimulation in chronic sarpogrelate treated rats. Eur J Pharmacol. 2014; 731: 80–87.
- Hayashi T, Sumi D, Matsui-Hirai H, et al. Sarpogrelate HCl, a selective 5-HT2A antagonist, retards the progression of atherosclerosis through a novel mechanism. Atherosclerosis. 2003; 168(1): 23–31.
- Chen YX, Wang WD, Song XJ, et al. Prospective randomized study of sarpogrelate versus clopidogrel-based dual antiplatelet therapies in patients undergoing femoropopliteal arterial endovascular interventions: preliminary results. Chin Med J (Engl). 2015; 128(12): 1563–1566.
- Miyazaki M, Higashi Y, Goto C, et al. Sarpogrelate hydrochloride, a selective 5-HT2A antagonist, improves vascular function in patients with peripheral arterial disease. J Cardiovasc Pharmacol. 2007; 49(4): 221–227.
- Takishita E, Takahashi A, Harada N, et al. Effect of sarpogrelate hydrochloride, a 5-HT2 blocker, on insulin resistance in Otsuka Long-Evans Tokushima fatty rats (OLETF rats), a type 2 diabetic rat model. J Cardiovasc Pharmacol. 2004; 43(2): 266–270.
- Daud ANA, Bergman JEH, Kerstjens-Frederikse WS, et al. The risk of congenital heart anomalies following prenatal exposure to serotonin reuptake inhibitors — is pharmacogenetics the key? Int J Mol Sci. 2016; 17(8).
- Wemakor A, Casson K, Garne E, et al. Selective serotonin reuptake inhibitor antidepressant use in first trimester pregnancy and risk of specific congenital anomalies: a European register-based study. Eur J Epidemiol. 2015; 30(11): 1187–1198.