English Polski
Tom 12, Nr 4 (2017)
Artykuł przeglądowy
Opublikowany online: 2017-09-19

dostęp otwarty

Wyświetlenia strony 763
Wyświetlenia/pobrania artykułu 19908
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Znaczenie rokownicze wybranych parametrów echokardiograficznych w ciężkiej skurczowej niewydolności serca

Wojciech Gilewski, Włądysław Sinkiewicz
Folia Cardiologica 2017;12(4):362-370.

Streszczenie

Echokardiografia ma ugruntowane miejsce w diagnostyce kardiologicznej. Dzięki możliwości oceny budowy i funkcji serca jest niezastąpiona przy ustalaniu rozpoznania niewydolności serca (HF), w diagnostyce różnicowej jej przyczyn, a także w prognozowaniu jej przebiegu. Powiększenie wymiarów lewej komory oraz obniżenie jej frakcji wyrzutowej, charakterystyczne dla zastoinowej HF, wykorzystano w najczęściej stosowanych skalach rokowniczych. Prawdopodobnie jednak w grupie chorych z najcięższym uszkodzeniem lewej komory większe znaczenie rokownicze mają powikłania hemodynamiczne tego stanu. Należą do nich: wzmożone ciśnienie napełniania lewej komory, którego konsekwencją jest nadciśnienie płucne, przeciążenie ciśnieniowe i objętościowe prawej komory i jej wtórna dysfunkcja skurczowa. Zarówno klasyczne, jak i nowoczesne parametry echokardiograficzne uzyskują coraz większe znaczenie w prognozowaniu przebiegu HF z obniżoną frakcją wyrzutową.

Referencje

  1. Ponikowski P, Voors AA, Anker SD, et al. Authors/Task Force Members, Document Reviewers, Authors/Task Force Members. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016; 37(27): 2129–2200.
  2. Bleumink GS, Knetsch AM, Sturkenboom MC, et al. Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure The Rotterdam Study. Eur Heart J. 2004; 25(18): 1614–1619.
  3. Levy WC, Mozaffarian D, Linker DT, et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation. 2006; 113(11): 1424–1433.
  4. Dini FL, Capozza P, Donati F, et al. Patterns of left ventricular remodeling in chronic heart failure: prevalence and prognostic implications. Am Heart J. 2011; 161(6): 1088–1095.
  5. Spinar J, Vítovec J, Spac J, et al. Non-invasive prognostic factors in chronic heart failure. One-year survival of 300 patients with a diagnosis of chronic heart failure due to ischemic heart disease or dilated cardiomyopathy. Int J Cardiol. 1996; 56(3): 283–288.
  6. Sengeløv M, Jørgensen PG, Jensen JS, et al. Global Longitudinal Strain Is a Superior Predictor of All-Cause Mortality in Heart Failure With Reduced Ejection Fraction. JACC Cardiovasc Imaging. 2015; 8(12): 1351–1359.
  7. Gilewski W. Wartość diagnostyczna i rokownicza nieinwazyjnych i inwazyjnych parametrów hemodynamicznych u chorych z ciężką skurczową niewydolnością serca podczas rocznej obserwacji. (niepublikowana rozprawa doktorska) Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu. (sygnatura czyt. 66186).
  8. Morales FJ, Asencio MC, Oneto J, et al. Deceleration time of early filling in patients with left ventricular systolic dysfunction: functional and prognostic independent value. Am Heart J. 2002; 143(6): 1101–1106.
  9. Correale M, Totaro A, Ieva R, et al. Tissue Doppler imaging in coronary artery diseases and heart failure. Curr Cardiol Rev. 2012; 8(1): 43–53.
  10. Rossi D, Pinna GD, La Rovere MT, et al. Prognostic significance of tissue-Doppler imaging in chronic heart failure patients on transplant waiting list: a comparative study with right heart catheterization. Eur J Echocardiogr. 2011; 12(2): 112–119.
  11. Okura H, Takada Y, Kubo T, et al. Functional mitral regurgitation predicts prognosis independent of left ventricular systolic and diastolic indices in patients with ischemic heart disease. J Am Soc Echocardiogr. 2008; 21(4): 355–360.
  12. Acarturk E, Koc M, Bozkurt A, et al. Left atrial size may predict exercise capacity and cardiovascular events in patients with heart failure. Tex Heart Inst J. 2008; 35(2): 136–143.
  13. Giannuzzi P, Temporelli P, Bosimini E, et al. Independent and incremental prognostic value of doppler-derived mitral deceleration time of early filling in both symptomatic and asymptomatic patients with left ventricular dysfunction. Journal of the American College of Cardiology. 1996; 28(2): 383–390.
  14. Rossi A, Cicoira M, Bonapace S, et al. Left atrial volume provides independent and incremental information compared with exercise tolerance parameters in patients with heart failure and left ventricular systolic dysfunction. Heart. 2007; 93(11): 1420–1425.
  15. Lang RM, Badano LP. Mor-AviV.iwsp. Recommendations for cardiac chamber quantification by echocardiography in adults: an up-date from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015; 16: 233-271.
  16. Maekawa E, Inomata T, Watanabe I, et al. Prognostic significance of right ventricular dimension on acute decompensation in chronic left-sided heart failure. Int Heart J. 2011; 52(2): 119–126.
  17. Sachero A, Casazza F, Recalcati F, et al. [Clinical and prognostic significance of echocardiographic parameters in dilated cardiomyopathy: a prospective study on 225 patients. The Italian Multicenter Study of Cardiomyopathies Group]. G Ital Cardiol. 1992; 22(9): 1077–1090.
  18. Sun JP, James KB, Yang XS, et al. Comparison of mortality rates and progression of left ventricular dysfunction in patients with idiopathic dilated cardiomyopathy and dilated versus nondilated right ventricular cavities. Am J Cardiol. 1997; 80(12): 1583–1587.
  19. Kaul S, Tei C, Hopkins JM, et al. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J. 1984; 107(3): 526–531.
  20. Ghio S, Recusani F, Klersy C, et al. Prognostic usefulness of the tricuspid annular plane systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol. 2000; 85(7): 837–842.
  21. Vizzardi E, D'Aloia A, Bordonali T, et al. Long-term prognostic value of the right ventricular myocardial performance index compared to other indexes of right ventricular function in patients with moderate chronic heart failure. Echocardiography. 2012; 29(7): 773–778.
  22. Meluzín J, Spinarová L, Dušek L, et al. Prognostic importance of the right ventricular function assessed by Doppler tissue imaging. Eur J Echocardiogr. 2003; 4(4): 262–271.
  23. Kim H, Jung C, Yoon HJ, et al. Prognostic value of tricuspid annular tissue Doppler velocity in heart failure with atrial fibrillation. J Am Soc Echocardiogr. 2012; 25(4): 436–443.
  24. Biegalski W, Poprawski K. Kandziora M. i wsp.: Prognostic value of left and right ventricular dysfunction in heart failure patients. Eur J Echocardiography. 2006; 7: 107.
  25. Meluzín J. Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion. A new, rapid, and non-invasive method of evaluating right ventricular systolic function. European Heart Journal. 2001; 22(4): 340–348.
  26. Damy T, Viallet C, Lairez O, et al. Comparison of four right ventricular systolic echocardiographic parameters to predict adverse outcomes in chronic heart failure. Eur J Heart Fail. 2009; 11(9): 818–824.
  27. Hinderliter AL, Blumenthal JA, O'Conner C, et al. Independent prognostic value of echocardiography and N-terminal pro-B-type natriuretic peptide in patients with heart failure. Am Heart J. 2008; 156(6): 1191–1195.
  28. Neuhold S, Huelsmann M, Pernicka E, et al. Impact of tricuspid regurgitation on survival in patients with chronic heart failure: unexpected findings of a long-term observational study. Eur Heart J. 2013; 34(11): 844–852.
  29. Pellicori P, Carubelli V, Zhang J, et al. IVC diameter in patients with chronic heart failure: relationships and prognostic significance. JACC Cardiovasc Imaging. 2013; 6(1): 16–28.
  30. Cappola TP. Pulmonary Hypertension and Risk of Death in Cardiomyopathy: Patients With Myocarditis Are at Higher Risk. Circulation. 2002; 105(14): 1663–1668.
  31. Yock PG, Popp RL. Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation. 1984; 70(4): 657–662.
  32. Kjaergaard J, Akkan D, Iversen K, et al. Prognostic Importance of Pulmonary Hypertension in Patients With Heart Failure. The American Journal of Cardiology. 2007; 99(8): 1146–1150.
  33. Yared K, Noseworthy P, Weyman AE, et al. Pulmonary artery acceleration time provides an accurate estimate of systolic pulmonary arterial pressure during transthoracic echocardiography. J Am Soc Echocardiogr. 2011; 24(6): 687–692.
  34. Ghio S, Gavazzi A, Campana C, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001; 37(1): 183–188.
  35. Adhyapak SM. Effect of right ventricular function and pulmonary pressures on heart failure prognosis. Prev Cardiol. 2010; 13(2): 72–77.
  36. Ghio S, Temporelli PL, Klersy C, et al. Prognostic relevance of a non-invasive evaluation of right ventricular function and pulmonary artery pressure in patients with chronic heart failure. Eur J Heart Fail. 2013; 15(4): 408–414.
  37. Guazzi M, Bandera F, Pelissero G, et al. Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis. Am J Physiol Heart Circ Physiol. 2013; 305(9): H1373–H1381.
  38. Madsen BK, Hansen JF, Stokholm KH, et al. Chronic congestive heart failure. Description and survival of 190 consecutive patients with a diagnosis of chronic congestive heart failure based on clinical signs and symptoms. Eur Heart J. 1994; 15(3): 303–310.
  39. Nath J, Vacek JL, Heidenreich PA. A dilated inferior vena cava is a marker of poor survival. Am Heart J. 2006; 151(3): 730–735.