English Polski
Tom 12, Nr 4 (2017)
Artykuł przeglądowy
Opublikowany online: 2017-09-19

dostęp otwarty

Wyświetlenia strony 817
Wyświetlenia/pobrania artykułu 2081
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Małopłytkowość indukowana protaminą — nowy problem czy inny typ małopłytkowości poheparynowej?

Joanna Mikłosz, Bartłomiej Kałaska, Emilia Sokołowska, Andrzej Mogielnicki
Folia Cardiologica 2017;12(4):355-361.

Streszczenie

Protamina jest powszechnie stosowanym środkiem odwracającym antykoagulacyjne działanie heparyny niefrakcjonowanej, szczególnie po zabiegach kardiochirurgicznych. Najnowsze badania wskazują, że część pacjentów poddanych zabiegowi krążenia pozaustrojowego jest narażona na trombocytopenię w trakcie ekspozycji na heparynę. Wielkocząsteczkowe kompleksy protaminy i heparyny wywołują immunizację i produkcję immunoglobulin G, które aktywują płytki krwi za pośrednictwem receptora FcγIIa. Podczas krążenia pozaustrojowego infuzja protaminy u niektórych pacjentów zwiększa ryzyko wczesnych powikłań zakrzepowych, spowodowanych obecnością tych przeciwciał we krwi. W niniejszym przeglądzie skupiono się na pracach, w których przebadano mechanizm aktywacji płytek krwi przez anty-protaminowo-heparynowe przeciwciała. Porównano je z przeciwciałami wywołującymi immunologiczną małopłytkowość poheparynową. Ponadto opisano kliniczne konsekwencje trombocytopenii indukowanej protaminą, czynniki ryzyka i ogólne wytyczne dotyczące terapii powikłań zakrzepowo-zatorowych u pacjentów kardiochirurgicznych.

Referencje

  1. Baehner T, Boehm O, Probst C, et al. [Cardiopulmonary bypass in cardiac surgery]. Anaesthesist. 2012; 61(10): 846–856.
  2. Yavari M, Becker RC. Anticoagulant therapy during cardiopulmonary bypass. J Thromb Thrombolysis. 2008; 26(3): 218–228.
  3. Sokolowska E, Kalaska B, Miklosz J, et al. The toxicology of heparin reversal with protamine: past, present and future. Expert Opin Drug Metab Toxicol. 2016; 12(8): 897–909.
  4. Lee GM, Welsby IJ, Phillips-Bute B, et al. High incidence of antibodies to protamine and protamine/heparin complexes in patients undergoing cardiopulmonary bypass. Blood. 2013; 121(15): 2828–2835.
  5. Bakchoul T, Zöllner H, Amiral J, et al. Anti-protamine-heparin antibodies: incidence, clinical relevance, and pathogenesis. Blood. 2013; 121(15): 2821–2827.
  6. Al-Mondhiry H, Pierce WS, Basarab RM. Protamine-induced thrombocytopenia and leukopenia. Thromb Haemost. 1985; 53(1): 60–64.
  7. Schnitzler S, Renner H, Pfüller U. Histamine release from rat mast cells induced by protamine sulfate and polyethylene imine. Agents Actions. 1981; 11(1-2): 73–74.
  8. Shastri KA, Logue GL, Stern MP, et al. Complement activation by heparin-protamine complexes during cardiopulmonary bypass: effect of C4A null allele. J Thorac Cardiovasc Surg. 1997; 114(3): 482–488.
  9. Stewart WJ, McSweeney SM, Kellett MA, et al. Increased risk of severe protamine reactions in NPH insulin-dependent diabetics undergoing cardiac catheterization. Circulation. 1984; 70(5): 788–792.
  10. Adourian U, Shampaine EL, Hirshman CA, et al. High-titer protamine-specific IgG antibody associated with anaphylaxis: report of a case and quantitative analysis of antibody in vasectomized men. Anesthesiology. 1993; 78(2): 368–372.
  11. Collins C, O'Donnell A. Does an allergy to fish pre-empt an adverse protamine reaction? A case report and a literature review. Perfusion. 2008; 23(6): 369–372.
  12. Chudasama SL, Espinasse B, Hwang F, et al. Heparin modifies the immunogenicity of positively charged proteins. Blood. 2010; 116(26): 6046–6053.
  13. Bakchoul T, Giptner A, Krautwurst A, et al. In vivo animal model of drug-induced thrombocytopenia: the clinical relevance of anti-protamine sulfate antibodies. J Thromb Haemost. 2011; 9(S2).
  14. Arepally G, Cines DB. Pathogenesis of heparin-induced thrombocytopenia and thrombosis. Autoimmun Rev. 2002; 1(3): 125–132.
  15. Rauova L, Zhai Li, Kowalska MA, et al. Role of platelet surface PF4 antigenic complexes in heparin-induced thrombocytopenia pathogenesis: diagnostic and therapeutic implications. Blood. 2006; 107(6): 2346–2353.
  16. Rauova L, Hirsch JD, Greene TK, et al. Monocyte-bound PF4 in the pathogenesis of heparin-induced thrombocytopenia. Blood. 2010; 116(23): 5021–5031.
  17. Cines DB, Tomaski A, Tannenbaum S. Immune endothelial-cell injury in heparin-associated thrombocytopenia. N Engl J Med. 1987; 316(10): 581–589.
  18. Kowalska MA, Krishnaswamy S, Rauova L, et al. Antibodies associated with heparin-induced thrombocytopenia (HIT) inhibit activated protein C generation: new insights into the prothrombotic nature of HIT. Blood. 2011; 118(10): 2882–2888.
  19. Panzer S, Schiferer A, Steinlechner B, et al. Serological features of antibodies to protamine inducing thrombocytopenia and thrombosis. Clin Chem Lab Med. 2015; 53(2): 249–255.
  20. Singla A, Sullivan MJ, Lee G, et al. Protamine-induced immune thrombocytopenia. Transfusion. 2013; 53(10): 2158–2163.
  21. Butterworth J, Lin YA, Prielipp R, et al. The pharmacokinetics and cardiovascular effects of a single intravenous dose of protamine in normal volunteers. Anesth Analg. 2002; 94(3): 514–522; table of contents.
  22. Warkentin TE, Warkentin TE, Greinacher A, et al. Delayed-onset heparin-induced thrombocytopenia and thrombosis. Ann Intern Med. 2001; 135(7): 502–506.
  23. Teoh KH, Young E, Bradley CA, et al. Heparin binding proteins. Contribution to heparin rebound after cardiopulmonary bypass. Circulation. 1993; 88(5 Pt 2): II420–II425.
  24. Nurden P, Poujol C, Durrieu-Jais C, et al. Labeling of the internal pool of GP IIb-IIIa in platelets by c7E3 Fab fragments (abciximab): flow and endocytic mechanisms contribute to the transport. Blood. 1999; 93(5): 1622–1633.
  25. Heyns AD, Lötter MG, Badenhorst PN, et al. Kinetics and in vivo redistribution of (111)Indium-labelled human platelets after intravenous protamine sulphate. Thromb Haemost. 1980; 44(2): 65–68.
  26. Greinacher A, Fuerll B, Zinke H, et al. Megakaryocyte impairment by eptifibatide-induced antibodies causes prolonged thrombocytopenia. Blood. 2009; 114(6): 1250–1253.
  27. Pouplard C, Leroux D, Rollin J, et al. Incidence of antibodies to protamine sulfate/heparin complexes incardiac surgery patients and impact on platelet activation and clinical outcome. Thromb Haemost. 2013; 109(6): 1141–1147.
  28. Zöllner H, Jouni R, Panzer S, et al. Platelet activation in the presence of neutral protamine Hagedorn insulin: a new feature of antibodies against protamine/heparin complexes. Journal of Thrombosis and Haemostasis. 2016; 15(1): 176–184.
  29. Warkentin TE, Kelton JG. A 14-year study of heparin-induced thrombocytopenia. Am J Med. 1996; 101(5): 502–507.
  30. Linkins LA, Dans AL, Moores LK, et al. Treatment and prevention of heparin-induced thrombocytopenia: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012; 141(2 Suppl): e495S–e530S.
  31. Watson H, Davidson S, Keeling D, et al. Haemostasis and Thrombosis Task Force of the British Committee for Standards in Haematology. Guidelines on the diagnosis and management of heparin-induced thrombocytopenia: second edition. Br J Haematol. 2012; 159(5): 528–540.
  32. Lewis BE, Wallis DE, Hursting MJ, et al. Effects of argatroban therapy, demographic variables, and platelet count on thrombotic risks in heparin-induced thrombocytopenia. Chest. 2006; 129(6): 1407–1416.
  33. Magnani HN, Gallus A. Heparin-induced thrombocytopenia (HIT). A report of 1,478 clinical outcomes of patients treated with danaparoid (Orgaran) from 1982 to mid-2004. Thromb Haemost. 2006; 95(6): 967–981.
  34. Warkentin TE, Maurer BT, Aster RH. Heparin-induced thrombocytopenia associated with fondaparinux. N Engl J Med. 2007; 356(25): 2653–2655; discussion 2653.
  35. Greinacher A. Heparin-Induced Thrombocytopenia. New England Journal of Medicine. 2015; 373(3): 252–261.
  36. Linkins LA, Warkentin TE, Pai M, et al. Design of the rivaroxaban for heparin-induced thrombocytopenia study. J Thromb Thrombolysis. 2014; 38(4): 485–492.
  37. Abo-Salem E, Becker RC. Reversal of novel oral anticoagulants. Curr Opin Pharmacol. 2016; 27: 86–91.
  38. Reilly MP, Sinha U, André P, et al. PRT-060318, a novel Syk inhibitor, prevents heparin-induced thrombocytopenia and thrombosis in a transgenic mouse model. Blood. 2011; 117(7): 2241–2246.
  39. Stolla M, Stefanini L, André P, et al. CalDAG-GEFI deficiency protects mice in a novel model of Fcγ RIIA-mediated thrombosis and thrombocytopenia. Blood. 2011; 118(4): 1113–1120.
  40. Shenoi RA, Kalathottukaren MT, Travers RJ, et al. Affinity-based design of a synthetic universal reversal agent for heparin anticoagulants. Sci Transl Med. 2014; 6(260): 260ra150.
  41. Kalaska B, Sokolowska E, Kaminski K, et al. Cationic derivative of dextran reverses anticoagulant activity of unfractionated heparin in animal models of arterial and venous thrombosis. Eur J Pharmacol. 2012; 686(1-3): 81–89.
  42. Kalaska B, Kaminski K, Sokolowska E, et al. Nonclinical evaluation of novel cationically modified polysaccharide antidotes for unfractionated heparin. PLoS One. 2015; 10(3): e0119486.
  43. Sokolowska E, Kalaska B, Kaminski K, et al. The Toxicokinetic Profile of Dex40-GTMAC3-a Novel Polysaccharide Candidate for Reversal of Unfractionated Heparin. Front Pharmacol. 2016; 7: 60.
  44. Kamiński K, Płonka M, Ciejka J, et al. Cationic derivatives of dextran and hydroxypropylcellulose as novel potential heparin antagonists. J Med Chem. 2011; 54(19): 6586–6596.
  45. Kalaska B, Kaminski K, Miklosz J, et al. Heparin-binding copolymer reverses effects of unfractionated heparin, enoxaparin, and fondaparinux in rats and mice. Transl Res. 2016; 177: 98–112.e10.
  46. Joglekar MV, Quintana Diez PM, Marcus S, et al. Disruption of PF4/H multimolecular complex formation with a minimally anticoagulant heparin (ODSH). Thromb Haemost. 2012; 107(4): 717–725.
  47. Jouni R, Zöllner H, Khadour A, et al. Partially desulfated heparin modulates the interaction between anti-protamine/heparin antibodies and platelets. Thromb Haemost. 2016; 115(2): 324–332.